Hydraulic Diaphragm Insert Pump

Jared Mangum, Smith Lift
Dave Brewster, ConocoPhillips
Outline

- Project Needs
- Background
- Solutions
- Field Results
- Conclusion
Project Needs

• ConocoPhillips San Juan operates approximately 10,000 gas wells

• A significant number of wells are < 6,000’ and < 100 BBLD

• Approximately 11% of well are lifted by rod pumps
Project Needs – a pump capable of:

- Deploy/Retrieve without conventional pulling unit
- Deploy in 2-3/8” tubing – vertical or horizontal wells
- Safe and consistent with environmental objectives
- Improved System Reliability (rod parts, tubing wear, piston wear, rod pound, etc.)
- Max gas rates by pumping off – no damage to pump
- Surface driven without electricity
Background – Diaphragm Pump Advantages

- Well fluid isolated from moving parts
- No gas locking issues
- Very good solids handling
- Positive Displacement
- Low net positive suction head
Background – Operation

- **Hydraulic lines** – concentric coil tubing or plastic
- **Power section** – powers the hydraulic section of pump
 - 2-3/8” production tubing or larger
- **Reservoir** - Communicates power fluid to diaphragm
- **Casing**
- **Diaphragm section** - Pumps the well fluid
- **Seating Nipple** – land in any standard “no-go” nipple
Background – Operation
Solutions – Current 2-3/8” Insert Capabilities

Hydraulic Diaphragm Insert Pump Work Window
(2 3/8 tubing insert capabilities)
Solutions – “Rigless” deployment

- Concentric steel coiled tubing: .75” inside of 1.5”
- Once “married” – single string pull and run
- One day turn around – pull and run pump

Concentric Coiled Tubing Plastic Dual String
Solutions – Deploy in existing 2-3/8” tubing

• Standing valve deployed in 2-3/8” tubing
• Production tubing loaded with water - first barrier
• Pack off at well head - second barrier
• Casing does not need to be loaded with kill fluid
• Bottom Line: No need to kill the well
• All installs to date have been done with live wells
Solutions – Vertical, deviated, or horizontal

- Coiled tubing allows horizontal or deviated installs
- No reciprocating rods or rotating shafts in tubing
- No electrical cable
- Installed – Corkscrew with dog leg of 10° / 100 ft
- Installed – Deviated “S” curve
- To be installed – Horizontal dual lateral at 65°
Solutions – Safe, environmental objectives

- Dual barrier options available
- Sealed well head – no moving parts
- Extremely low profile (54”)
- Extremely small footprint
- Surface unit distanced from wellhead
- Multiple wells with one surface unit
Solutions – Reduced mechanical failure

- All moving parts isolated from well fluid / solids
- No reciprocating rods or spinning shafts at well head
- No down hole electricity / cable
- Diaphragm design eliminates fluid pound
- Diaphragm design eliminates rod / piston wear
- Solids – no barrel to plunger / piston interface with produced fluid
Solutions – Maximize gas/pump off

• Pump can run completely dry without damage
• Pump off indefinitely without pump damage
• No electrical motor down hole (cooling)
• Excellent resistance to gas locking / interference
• Extremely easy to adjust flow rate
Solutions – Surface unit power options

Compressor and Casing Unit units
(Compressed Gas, Propane, etc.)

Electric Power Unit

Feb. 25 - 27, 2008

2008 Gas Well Deliquification Workshop
Denver, Colorado
Field Results – Well Case Studies

- 6 pumps currently running with COP
- Learning curve
- Longest run with COP is 6 months and running
- Longest run to date is 9 months and running
- Pumped off multiple wells
Field Results – Well A

Well A
(HDI Pump Installed 9/28/2007)
Conclusion – HDI Pump

- “Rigless” insert deployment – deviated or vertical
- Environmentally and operationally safe
- Eliminates or reduces mechanical failure
- Maximizes gas rates – pump off
- Multiple surface power options
Acknowledgments

• ConocoPhillips Houston & Farmington Offices

• RMOTC (Rocky Mountain Oilfield Testing Center)

• Smith International, Inc

• Sooner B&B

• Curtis Compressor
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.