Condensate Influenced Loading: A case study

Carl Kennedy, Business Development Manager
BJ Dyna-Coil Services – Canada

Co-Authors;
Ryan Hansen, Encana
Thane Schaffer, BJ Dyna-Coil Services
Case Study Summary

- Sweet gas well in South West Alberta
- Experienced a continuous production decline
- Liquid loading
 - 90:10 brine:hydrocarbon condensate
- Initial surfactant batches had short term production benefits
- Capillary deployment and on site chemical selection increased cumulative production
Outline

- Historical Production
- Foam Lift Candidate Characteristics
- Well Candidate Selection
- Surfactant Testing Procedures
- Production Impact
- Return on Investment
- Summary and Go Forward
Surfactant batches had short term success

Diagram:
- Batching chemical every 2 days
Foam Lift Candidate Characteristics

- Gas rates below critical velocity
- Cyclic production
- High tubing to casing differential pressure
- Responds to soap sticks or batch treatments
- High fluid levels
Onsite Chemical Testing Conducted

- Representative field brine/condensate sample is obtained
- Blender test is used to measure foam height and foam half-life
- Foam tower is used to determine liquid lift efficiency
 - Measured volume of brine/condensate is used
 - Selected volume of surfactant is added (based on blender test results)
 - Measured rate of gas is “bubbled” through column
 - Carried over foam/liquid is weighed
Chemical Selection Challenges

- Cost effectiveness
- Capillary approved
- Winterized
Production Benefit

- Cumulative production was much less than the peak production rate due to the cyclical curve.
- Estimated that only 60% of the peak production rate was actually produced over a 24 hour period.

- Production before capillary
 - $15 \times 10^3 \text{m}^3/\text{d} \times 60\% = 9 \times 10^3 \text{m}^3/\text{d}$ cumulative daily production
 - $530 \text{Mscfd} \times 60\% = 320 \text{Mscfd}$ cumulative daily production

- Production after capillary
 - $13 \times 10^3 \text{m}^3/\text{d}$ cumulative daily production
 - 460Mscfd cumulative daily production
Economic Benefit

- 4 e³m³/d increased production x $250 per e³m³ = $1000/day increased revenue
- 140 Mscfd increase x $7.00 per Mscfd = $1000/day
- 23 BOE/d increase in production
- 40% increase after capillary install.
- 10-12 day payout
- Daily chemical operational cost $15.00/day est.
Tangible Benefit

• Reduced operator time and efficiencies (2 hour/day avg. x $90/hr)
• Constant flow through compressors and dehydrators reduces upsets
Conclusions

- Condensate tolerant surfactants developed
- Increased cumulative production
- Conventional surfactant applications methods not always best practice
- Optimization of hidden cost including operations personnel and upsets

- Going forward.....
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.