Plunger Lift: SCSSSV Applications

William Hearn, Weatherford
Ewout Biezen, NAM
Agenda

- WHY
- WHAT
- HOW
- Way forward
WHY: background

- Need for effective de-liquification of mature wells with SCSSSV within NAM
- Current plunger technology is used worldwide to efficiently unload LL wells
- More gains than normal Pressure BuildUp due to automatic cycle and efficient unloading
- Cheaper than other de-liquification methods
- New plunger technology designed to mitigate for tubing ID restriction
WHY: background

- Denver conference: idea was born
- LL-conference: project possibility identified
- NAM 3.5” Candidate wells identified
- First Design
- Second Design
- Lab-Tests
- Lab-Tests
- Automatic IP installed

Timeline:

- Q1 2006
- Q2 2007
- Q3 2007
- Q4 2007
- Q1 2008
- Q2 2008
WHAT: operating cycle

1. Liquid Loading
 - Plunger hangs in open position under SSSV
 - Liquid in liner+tubing builds up
 - Flowrate declines

2. Shut-in
 - Well automatically shuts in (ROV)
 - Plunger falls in open position

3. Shut-in build-up
 - Plunger reaches bottom and closes
 - Short build-up

4. Unloading (plunger travel)
 - Well automatically opens (ROV)
 - ΔP lifts plunger+liquid in closed position

5. Flowing well
 - Plunger hangs in open position under SSSV
WHAT: production profile

Flowrate m3/d pre-project: unstable

THP bar pre-project: shut-in cycle (PBU)

Expected flowrate post-project: 30,000 m3/d constant
HOW: SafetyLift System Components

The SafetyLift System is comprised of four major components:

- Bottom Hole Assembly
- Plunger
- Upper Landing Assembly
- Remote operated valve with Controller Unit
HOW: SafetyLift System Components

Bottom Hole Assembly

- Standard Double Bumper Spring
- G-PackOff-Optional
- Type ‘A’ Tubing Stop
- MP-1 Standing Valve Optional

- Installed using standard wireline procedures
- Installed at a pre-determined depth in relation to the well perforations
HOW: SafetyLift System Components

Original Design “High Collapse” RapidFlo Plunger

• Body Components machined to drift through 2.750” diameter of the Safety Valve Landing Nipple

• T-Pad Elements specially designed for increased collapse

• Plunger designed with fewer connections than standard RapidFlo Plungers for increased reliability.
HOW: SafetyLift System Components

New design “High Collapse” Padded Safety Valve Plunger

- Body Components machined to drift through 2.750” diameter of the Safety Valve Landing Nipple
- T-Pad Elements specially designed for increased collapse.
HOW: SafetyLift System Components

Original design Upper Landing Assembly

- Vent Sub
- Ball & Seat (Optional)
- Swab Cup/Sealing Element (Optional)
- Standard Type ‘A’ Tubing Stop
- Inverted Anti-Recoil Bumper Spring w/ “FlowCatch” Strike Rod
- Installed directly below the Safety Valve using standard wireline procedures
HOW: SafetyLift System Components

New design Upper Spring Assembly
HOW: SafetyLift System Components

Controller

- Control system to determine plunger arrival in upper assembly:
 - Flowing THP, system pressure and flow rate measured
 - Typical peaks in signals identified and arrival determined
HOW: Testing Apparatus

- A test well was built for this project
 - Inverted Double Bumper spring
 - Clear Plastic for viewing
 - Compressor with considerable horsepower to deliver gas rates for testing
Way forward

- LL-conference: project possibility identified
- Denver conference: idea was born
- NAM 3.5” Candidate wells identified
- First Design
- Lab-Tests
- Second Design
- Lab-Tests
- Automatic IP installed
- Evaluation
- Installation in 3 NAM wells

Timeline:
- Q1 2006
- Q2 2007
- Q3 2008
Video of plunger during high flow and low flow

Show video
QUESTIONS?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.