Comparing The Methods Of Controlling Liquid Loading

Jim Hacksma - Consultant
METHODS / SOLUTIONS COMPARED

- Choking
- Water Shut-Off
- Compression
- Velocity Strings
- Foam
- Plunger Lift
- Continuous Gas Circulation
- Continuous Gas Circulation + Compression
- Gas Lift
- Beam Pumping

POSSIBLE SOLUTIONS?
FOR LIQUID LOADING
CHOKING

- Smaller Choke
- Increased FTP (100# To 300#)
- Increased FBHP (bad)
- Increased Critical Rate (bad)
- Loading Even Worse (bad)
- DON’T INCREASE FTP
WATER SHUT-OFF (liquid elimination)

- Reduce Liquid From 200 To 1 Bbl/MMCF
- But, Liquid Loading Still A Problem
- Water Shut-Off Can’t Eliminate Loading
- Critical Rate Is Not Reduced

At Only 1 Bbl/MMCF, Loading Still A Problem
WATER SHUT-OFF (liquid elimination)

• A Seemingly Obvious Solution To Liquid Loading, But…
 – Can’t Eliminate All Liquid (4 sources of liquid)
 – Can’t Eliminate Loading (because some liquid remains)
 – Does Not Reduce The Critical Rate (Turner & Coleman)

• Often Accidentally Shut Off Some Gas
 – Makes Loading Even Worse

• The Benefits Are Questionable & Uncertain

• Before Undertaking A Water Shut-Off;
 – Must Be Certain Zone To Be Isolated Produces No Gas
 – The Water Producing Rate Must Be Extremely High
Feb. 25 - 27, 2008 2008 Gas Well Deliquification Workshop
Denver, Colorado

COMPRESSION

- Install Compressor
- Decrease FTP (300# To 100#)
- Decrease FBHP (good)
- Decrease Critical Rate (good)
- **But, Loading Still A Problem**
- **NOT PERMANENT SOLUTION**

LOADING STILL A PROBLEM

CRITICAL RATES

300#

100#
COMPRESSION

• **Compression Good (reducing FTP), But Not For Loading**
• **Venting To Atmosphere Is Poor** (BP-Echometer Study)
• Then, **How Can Compression Be Good** (higher pressure)
• Personal Experience:
 – Installed Plunger Lift On Wells Already On Compression
 – Got Good Production Increases – Removed Compressors
 – Conclusion: *Compression Had Not Been Removing Liquid*
• **RECOMMENDATION:**
 – *First*, Install A Good Method For Controlling Loading
 – *Second*, Install Compression To Further Increase Production
VELOCITY STRINGS

NARROW OPERATING RANGE

- Lower Critical Rates
- **But**, Must Change Tubing Often
- BECOMES VERY COSTLY
- And, Loading Still A Problem

BROAD OPERATING RANGE

- 3/4”
- 1”
- 1 1/4”
- 2 3/8”
FOAM (a characterization)

- Used a Velocity String to Characterize
- Foam does help loaded wells
- But, loading is still a problem
- Not a permanent solution

Helps at lower rates (where loading is a problem)

Doesn’t help at higher rates (due to friction and/or density)
FOAM (a characterization)

• Foam Helps, But Not Enough
• No Rigorous Nodal Analysis, But What Do We Know?
 – Foam Gradient And/Or Friction Greater Than For Fine Mist
 – If Not, Foam Would Be Started At Higher Rates (above critical)
 – Critical Rate Reduced, But Not To “0” (loading still a problem)
 – In Between, *Foam Is Capable Of Helping Loaded Wells*
 – The Above Description Is *Similar To That For A Velocity String*
• The Prior Nodal Analysis Of Foam Is *Conceptually Correct*
• FOAM – *Loading Still A Problem - Not Permanent Solution*
PLUNGER LIFT – “GOOD WELL”

- Long Flows
- Short Shut-Ins
- FBHP Nearly As Low As Flowing Well

OPENING PRESSURE

“SHORT” SI

“LONG” FLOWS AT LOW FBHP

TIME-AVG FBHP RELATIVELY LOW
PLUNGER LIFT – “DEPLETING WELL”

- **Short Flows**
- **Long** Shut-Ins
- FBHP Much Higher Than Flowing Well

OPENING PRESSURE

“LONG” SI

“SHORT” FLOWS AT LOW FBHP

TIME-AVG FBHP HIGHER
PLUNGER LIFT (a characterization)

- Well Gets Weaker
- Flows Shorten & Shut-Ins Lengthen
- Time-Average FBHP Increases
- FBHP Increases, As With Liquid Loading
- Fewer Trips Can Be Made – Eventually None
- NOT A PERMANENT SOLUTION

An Improvement, But Not Perfect

FBHP & Back-Pressure Increase As Well Gets Weaker
PLUNGER LIFT

- Most Common Solution For Liquid Loading
 - As Good As Plunger Lift Is, It Is Not Perfect (may not be best)
- Prior Nodal Not Rigorous, But Conceptually Correct
- As Well Declines;
 - SI Periods Grow Longer & Flow Periods Grow Shorter
 - **WHILE** Reservoir Pressure (SBHP) Is Decreasing….
 - Back-Pressure (FBHP) On Formation Is Increasing
 - A BAD COMBINATION
 - *Very Similar To Loading* (decreasing SBHP & increasing FBHP)
 - Eventually, *Well Quits Producing Because It Can No Longer Build Up To The Opening Pressure Of The Plunger*
CGC (continuous gas circulation)

- CIRCULATION MAINTAINS LOW FBHP;
- CONTINUOUSLY
- DOWN TO “0” RATE
- PERMANENT SOLUTION

CGC MAINTAINS LOW FBHP, DOWN TO “0” RATE, PREVENTS Loading PERMANENTLY
CGC (continuous gas circulation)

Note Compressor Position:
• Sales By-Pass Compressor
• Does Not Reduce FTP

Think Of CGC As Gas Lift, Except:
• No Gas Lift Valves
• No Packer
• No Outside Source Of Gas

Formation Gas = Sales Gas
Circulated Gas
Formation + Circulation = High Velocity

Separator → Compressor → Motor Valve → Sales Meter → Sales Meter
Formation Gas = Sales Gas
Circulated Gas
Formation + Circulation = High Velocity

See Presentation On CGC At This Workshop
SAME RATE UP TUBING – SAME FBHP

Before Loading

Separator

Same FTP

Same Rate

Same FBHP

CGC Achieves Same FBHP That Existed Before Loading

After Loading w/ CGC

Separator

Compressor

See Presentation On CGC At This Workshop
CGC + COMPRESSION

- Use One Compressor To Both Reduce FTP & Circulate
- Compression Is Good, But Not For Controlling Loading
- Circulation Controls Loading
- In Tight Reservoirs, Little Sales Increase Over CGC Alone

Critical Rate

300#
100#

Prevents loading permanently
CGC + COMPRESSION

Advantage Of Both CGC (controlling loading) & Compression (reducing FTP):
- Increased Production

Disadvantages:
- Added Controls & Metering
- Added Operating Complexity
- Compression Ratio & HP Increased
- Little Production Increase Over Simple CGC
 - Especially In Tight Reservoirs

See Presentation On CGC At This Workshop
GAS LIFT

- If Done CORRECTLY, Gas Lift Is As Effective As CGC
- Plus, Offers Some Advantages Over CGC
- A PERMANENT SOLUTION

LOADING

MAINTAINS LOW FBHP, DOWN TO “0” RATE, PREVENTS LOADING PERMANENTLY
Done Correctly, Gas Lift Can Be Very Good
- Classic Design For Oil Wells Not Best For Gas Wells

Gas Lift Used To Recover Frac Fluid
- Or, If A Shut-In Won’t Create Dry Wellbore

CGC Used To Control Liquid Loading

Transition From Gas Lift To CGC
- Unload With Gas Lift Valves & Buy-Back Gas
- Transition To CGC
- Circulate Around End-of-Tubing & Quit Buying Gas
- Reduce Discharge Pressure, Ratio & HP

See Presentation On CGC At This Workshop
BEAM PUMP (gas locking example)

<table>
<thead>
<tr>
<th>WELL PRODUCTION</th>
<th>PUMP CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Well With Loading</td>
<td>1-1/4” Pump - 64” Stroke</td>
</tr>
<tr>
<td>100 MCFD</td>
<td>8 SPM - 11,520 Strokes / Day</td>
</tr>
<tr>
<td>10 Bbl / MMCF</td>
<td>1.23 In^3 / Inch Of Stroke</td>
</tr>
<tr>
<td>1 BPD</td>
<td>Only 0.7” Of Liquid Fill / Stroke</td>
</tr>
<tr>
<td>42 Gal / Day</td>
<td>Virtually No Liquid Entering Pump</td>
</tr>
<tr>
<td>5376 Ounces / Day</td>
<td>No Pump-Off Controller</td>
</tr>
<tr>
<td>Only 0.47 Oz Per Stroke</td>
<td>Gas Enters Pump</td>
</tr>
<tr>
<td>Only 0.85 In^3 Per Stroke</td>
<td>Pump Is Poor Gas Compressor</td>
</tr>
<tr>
<td>Liquid Builds Up In Casing</td>
<td>PUMP “GAS LOCKS”</td>
</tr>
<tr>
<td>Production Decreases</td>
<td>Pump Moves No Liquid Nor Gas</td>
</tr>
</tbody>
</table>
BEAM PUMP

- Most Common – It Is The Best For Many Wells
- But, **May Not Be Best Where Liquid Volume Is Low**
- Gas Separation Can’t Prevent Gas From Entering Pump
- **Pump-Off Controller Is A Must**
 - Even With A Pump-Off Controller, A Pump May Not Be Best
- **Personal Experience:**
 - On Oil Wells With Increasing GOR, Replaced Pumps With PL
 - Got Production Increases – *Plunger Lift Was Better Than Pump*
- **Conclusion:** **Pump Is Not Always Best**
A QUICK REVIEW

<table>
<thead>
<tr>
<th>METHOD</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choking</td>
<td>Increased FTP Makes Loading Worse</td>
</tr>
<tr>
<td>Water Shut-Off</td>
<td>Critical Rate Is Not Reduced</td>
</tr>
<tr>
<td>Compression</td>
<td>Good, But Not Best For Loading</td>
</tr>
<tr>
<td>Velocity Strings</td>
<td>Expensive – Must Change Tubing Often</td>
</tr>
<tr>
<td>Foam</td>
<td>Helps, But Not A Permanent Solution</td>
</tr>
<tr>
<td>Plunger Lift</td>
<td>Helps, But Not A Permanent Solution</td>
</tr>
<tr>
<td>CGC</td>
<td>A Permanent Solution</td>
</tr>
<tr>
<td>CGC + Compression</td>
<td>Permanent, Plus Reduced FTP</td>
</tr>
<tr>
<td>Gas Lift</td>
<td>Can Be As Good As CGC + Advantages</td>
</tr>
<tr>
<td>Beam Pumping</td>
<td>Not Best Where Liquid Rate Is Low</td>
</tr>
</tbody>
</table>
THANK YOU

Jim Hacksma - Consultant
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

− Display the presentation at the Workshop.
− Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
− Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.