Development of Global approach to Gas Lift Surveillance and Optimization

Rodney Bane, Mike Johnson, Arthur Vargas and Sampson LeJeune
ExxonMobil Production Company - Global Artificial Lift Group
“Exxon Mobil Corporation has numerous subsidiaries, many with names that include ExxonMobil, Exxon, Esso and Mobil. For convenience and simplicity in this presentation, the parent company and its subsidiaries may be referenced separately or collectively as ‘ExxonMobil’. Abbreviated references describing global or regional business lines are also sometimes used for convenience and simplicity. Nothing in this presentation is intended to override the corporate separateness of these legal entities. Working relationships discussed in this presentation do not necessarily represent a reporting connection, but may reflect a functional guidance, stewardship, or service relationship.”
Abstract

Objective: Outline the organization, plans and results of the Global Artificial Lift group formed at ExxonMobil to focus key resources on evaluation and optimization of artificial lift systems. Exxonmobil operates over 10,000 artificial lift wells globally and the largest segment of production from artificial lift comes from approximately 1000 gas lifted wells.

This presentation will describe how this new group has been designed and implemented to focus on artificial lift globally and more specifically on gas lift operations in particular. The presentation will describe the role of rotating technicians and the tools they use to evaluate and optimize gas lift wells.
Another chapter in Optimization at ExxonMobil

<table>
<thead>
<tr>
<th>Year</th>
<th>Gas Lift Workshop</th>
<th>Topic</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Gas Lift Experience</td>
<td>Gas Lift Experience - Bane</td>
<td>Outlined new US Artificial Lift organization</td>
</tr>
<tr>
<td>2007</td>
<td>Gas Lift Challenges</td>
<td>Gas Lift Challenges - Johnson</td>
<td>Discussed dual gas lift optimization</td>
</tr>
<tr>
<td>2008</td>
<td>Gas Lift Optimization and Surveillance Using Dedicated Resources</td>
<td>Gas Lift Optimization and Surveillance Using Dedicated Resources - Corbell</td>
<td>Reviewed optimization results from two US fields</td>
</tr>
</tbody>
</table>
ExxonMobil - Global Gas Lift statistics (2009)

Producing oil wells = ~ 10,000
Production = ~ 6.5 MBFPD
(2.8 MBOPD)

- Artificial Lift wells = ~ 9000
- Gas Lift wells = 1011
- Production from Gas Lift wells = 2.1 MBFPD (~ .8 MBOPD)
- Key gas lift areas = US, South East Asia, Canada, West Africa, Australia and North Sea
 - These numbers do not include XTO or Iraq.
 - Anticipate significant increases in number of gas lift wells and production in Russia, Canada, West Africa and Middle East over the next few years.

Feb. 7 - 11, 2011
Background - US Gas Lift Optimization results

2008 - 371 gas lift wells
- 3 Gas Lift Techs
- Evaluated 83 wells and optimized 37 wells
- Average build-up per well ~ 46 BOPD
- Total build-up ~ 2.5 % of gas lift production

2009 - 343 gas lift wells
- 4 Gas Lift Techs
- Evaluated 87 wells and optimized 48 wells
- Average build-up per well ~ 62.5 BOPD
- Total build-up ~ 5 % of gas lift production

2010 - 5 Gas Lift Techs
- Evaluated 119 wells and optimized 44 wells
- Average build-up per well ~ 80 BOPD
- Total build-up ~ 7% of gas lift production
ExxonMobil - Global Artificial Lift Group

Authors

Feb. 7 - 11, 2011
2011 Gas-Lift Workshop
Gas Lift Technician Deployment Process and Tools

- Prior to deployment the Global Artificial Lift group works with local Subsurface Engineering team to review wells and prioritize evaluation candidates.
- Coordinate pre-deployment training and safety orientation with local Operations personnel.
- Typical deployment is for a 28/28 rotation but flexible on scheduling.
- Key Tools:
 - Echometer - Determine fluid levels, identify holes and determine injection point.
 - Digital thermal monitor - Determine efficiency of test facilities.
 - Clamp-on flowmeter - Estimate and/or verify gas injection rates.
 - WellTracer™ - Determine injection point(s), communication and efficiency.
Gas Lift Optimization Techniques and Focus

- Focus on immediate volumes impact while identifying wells for additional diagnostics (i.e., FPTs, WellTracer™, etc.) and further evaluation (e.g., ESP candidate screening, valve redesign, installation of packoff, tubing change out, etc.)
- First priority are wells that Operations identify as ‘problem wells’.
- Identify potential safety, gas lift measurement and control improvements.
- Review unloading and operation procedures and processes.
- Dedicate time to OJT and formal training of operators.
- Pay special attention to shut in and dual gas lift wells
 - Typically these receive less attention and have greater potential uplift
Early Results

SE Asia - Offshore Gas Lift Optimization

- Evaluated 29 wells and made 12 optimization recommendations
- Buildup from recommendations completed ~ 24%
- Total build-up realized ~ 1.2 % of gas lift production evaluated
- Identified ~ 600 BOPD buildup potential
- Identified potential improvements to surface control and measurement
Early Results

Europe - Onshore Gas Well deliquification candidate evaluation
- Evaluated 59 wells
- Identified ~ 8 MMSCFD build-up potential
- Identified significant cost reduction potential using Best Practices

North America - Onshore Gas Lift and Rod Pump Optimization
- Evaluated 23 gas lift wells
- Optimized 9 gas lift wells yielding ~ 4% total field build-up
- Provided needed gas lift operator training

Feb. 7 - 11, 2011 2011 Gas-Lift Workshop
Key Observations

- Rotating Technicians offer a greater opportunity to share technology and best practices.
- Many of the benefits and improvements identified were not anticipated during pre-deployment discussions.
- Deployment is more complex than anticipated (i.e., equipment delivery and Customs, equipment compatibility, training, etc.).
- Best results appear to come from locations where operators can work closely with the Gas Lift Technicians during deployment.
- Build-up opportunities are significant even in areas with experienced operators and developed processes.
- Follow-up and maintenance of build-up is a challenge.
- During the first year this group will ‘touch’ less than 10% of ExxonMobil gas lift wells around the world.
Next Steps

• Plan deployments or assignments to all units with gas lift wells.
• Return to units for follow-up on recommendations and to identify new potential.
• Work to streamline travel and equipment delivery.
• Continue to expand use of tools and develop expertise in evaluating gas lift under a broad range of conditions.
• Focus on developing local expertise to maintain buildup and expand optimization results.
• Utilize learnings to develop remote and/or automated surveillance processes and tools.
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.