Gas Well Deliquification Workshop
Sheraton Hotel, Denver, Colorado
2012
Breakout Session

Ask the Expert: Analyzing & Troubleshooting Plunger Lifted Wells

Special Thanks to Board of Experts
Dave Cosby, Ferguson Beauregard
Stan Lusk, Integrated Production Systems
Ryan Olsen & Gavin Hein, WPX Energy
Bill J. Hearn, Conoco Phillips
Lynn Rowlan, Echometer Company
Breakout Session Details

Session Purpose – Held discussion on various topics with respect to trouble shooting and various plunger problems. Team of 6 experts fielded questions from the audience and asked the audience questions.

Number of Attendees:

Approximately 90. Most were operators, maybe 20% vendors.

Duration of Session ~ still at it when time was up.
People

What is the optimal normal operation polling rate?
• 1 min. best
• 5 min. too long
• 1 hr. way too long

How many people/well?
• 90 wells/optimizer on the ground
• 1500 wells/engineers/senior foreman

How long does it take to analyze a well?
• normal trend analysis on one well a few seconds
• problem wells elevated to higher level. More involvement of upper group.
• Engineer may spend 30 min./well
• It takes time to get there.
• Take bite size pieces.
• Do a little something. See what happens
Plunger Life

When do you inspect/change plungers?
- Change before seal lost or damage occurs
- Some wells require plunger change monthly
- Keep track of plunger life in well. May change based on previous life expectancy.
- Bumper Spring every two years (1 year better but not done)
- If casing pressure increasing – may need new plunger

What causes plunger to wear out quick?
- Plunger material
- Sand tears up plunger
- 1 manufacturer may work best in one well, but another type manufacturer better in another well
- Some companies may be better than others
- Spiral cut of solids plungers helps even out wear in S shaped wells – by rotating plunger and not wearing on one side
Plunger Limitations

When to use Gaslift vs Plunger lift?
 • Gaslift, if well produces lots of liquid and sand
 • Use rule of thumb ~ 400 scf/bbl liquid/1000 feet of depth

Plunger lift seating nipple depth in deviated/horizontal wells
 • 60 degrees ~ maybe up to 70 degrees
 • How deep can the wireline go to retrieve plunger?
 • Padded plungers speed up above 20 degrees, loose seal
 • Solid Plungers > 20 Degrees slow down due to friction
 • Normal 45-50 degrees in Barnett Shale

What is the maximum Dog Leg Severity
 • For pretty short Plunger maybe up to 4.5 deg/100 – limit
 • Start thinking about problem > 3 deg/100
 • Plunger dependent
 • Short padded works better in dog leg 25-40 degrees/100
Do you use SV
- During shut-in, if tubing & casing pressure get closer together
- Always run, must justify why not
- Wet wells consider uses pressure relief SV
- Don’t notch seat
- 200+ BPD with fast cycle plungers

How many cycles do you allow a missed arrival?
- Only 1
- Move than 1, then probably will have loaded up well
- Only 1 - Verify that arrival sensor is working, if not look for arrival based on tubing pressure rise when liquid arrives

Where do you set tubing intake?
- Near bottom – in dryer wells; 5% off bottom
- 40-60% into perforations
- Never above perfs
- 100 ft above best gas producing zone; at best zone
Other Thoughts

What control setting used to start and stop plunger lift well?
- Shut-down when drops below critical rate during after flow
- Use arrival velocity to make adjustments
- On horizontal wells, wait and look for leg to have 2nd unload
- Many different types of control algorithms, use the right one for the well

What maximum gas production rate?
- 4 mmcf/d with line pressure 1000-1800
- Low pressure and low liquid rate is tougher/more dangerous

When do you convert your flowing well to on Plunger Lift?
- 45% – wait until production drops and liquid loads
- 45% – proactive put plunger to maintain production
- 10% – don’t know
- Should start when 20% - 30% above Turner Critical Rate
- Vendor recommends to be proactive, but operator complains because NO uplift and just stayed on decline curve
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.