Field Trial Results for Polyamide as a Velocity String In Medium Depth Gas Wells

Dave Sask, Production Engineer, Encana Corporation, Calgary
Kim Richmann, Performance Polymers Oil & Gas Development Lead, DuPont, Missouri
Outline

- Context of the problem
- The opportunity
- DuPont™ Pipelon® 401 material and specifications
- Identified risks
- Field deployment
 - Down hole tools
 - Well head equipment
- Results
- Summary
- Future opportunities
The Problem

• Corrosion in existing coiled tubing strings
 – 50% inside jointed tubing, remainder coil only
 – 50% have been identified as having holes (Echometer)
 – Low gas prices do not support replacement with jointed tbg

• Environment
 – Horizontal Gas Wells
 – 2% - 4% CO₂
 – Trace H₂S
 – Depth 1400 – 1600 meters TVD (4600-5250 ft)
 – 80°C (176°F) BHT
 – GLR 30 litres/e³m³ (5 bbl/mmcf)
The Opportunity

- **Options**
 - Do nothing (production losses)
 - Replace with heavier wall steel CT (implement inhibition)
 - Replace with jointed tubing (Expensive $$$)
 - Explore alternative materials (plastics)

- **Plastics**
 - HDPE (wells too deep, too hot)
 - Thermoflex™ (not suitable for -30C (-20F) installations)
 - DuPont™ Pipelon® 401 (no experience)
Advantages – DuPont™ Pipelon® 401

• Comparable in cost to steel CT
 – Similar material costs
 – Similar installation costs

• Corrosion resistance

• Lower frictional effects and potential uplift
 – Modeled with static well bore software
 – Reduction in friction can increase production on a well producing 7e3m3/d (250mscf/d) by 1 e3m3/d (35mscf/d)
Physical Property Comparison

PE vs. PA6,12

<table>
<thead>
<tr>
<th>Property</th>
<th>HDPE</th>
<th>DuPont™ Pipelon® 401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, g/cc</td>
<td>0.95</td>
<td>1.06</td>
</tr>
<tr>
<td>Water Absorption, % (saturation)</td>
<td>0.01</td>
<td>1.3</td>
</tr>
<tr>
<td>Yield Strength, Kpsi</td>
<td>3500</td>
<td>6500</td>
</tr>
<tr>
<td>Tensile Elongation, %</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>Flex Modulus, Kpsi</td>
<td>160</td>
<td>101</td>
</tr>
<tr>
<td>Deflection Temp, F</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td>HDB psi 73F</td>
<td>1600</td>
<td>2500</td>
</tr>
<tr>
<td>Melt Temperature, F</td>
<td>270</td>
<td>415</td>
</tr>
</tbody>
</table>
DuPont™ Pipelon® 401 CT Specifications

<table>
<thead>
<tr>
<th>Temp F</th>
<th>OD, inch</th>
<th>ID, Inch</th>
<th>Wall, Inch</th>
<th>Pipelon 401 Yield Stress, PSI</th>
<th>Calculated Burst Pressure, PSI</th>
<th>Calculated Collapse Pressure, psi</th>
<th>Maximum Pull Loading, lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DF = 1.00</td>
</tr>
<tr>
<td>-40°F</td>
<td>1.5</td>
<td>1</td>
<td>0.25</td>
<td>11,700</td>
<td>3,900</td>
<td>18,056</td>
<td>11,486</td>
</tr>
<tr>
<td>73°F</td>
<td>1.5</td>
<td>1</td>
<td>0.25</td>
<td>5,000</td>
<td>1,667</td>
<td>7,716</td>
<td>4,909</td>
</tr>
<tr>
<td>176°F</td>
<td>1.5</td>
<td>1</td>
<td>0.25</td>
<td>2,800</td>
<td>933</td>
<td>4,321</td>
<td>2,749</td>
</tr>
<tr>
<td>-40°F</td>
<td>1.75</td>
<td>1.25</td>
<td>0.25</td>
<td>11,700</td>
<td>3,343</td>
<td>18,755</td>
<td>13,784</td>
</tr>
<tr>
<td>73°F</td>
<td>1.75</td>
<td>1.25</td>
<td>0.25</td>
<td>5,000</td>
<td>1,429</td>
<td>8,015</td>
<td>5,890</td>
</tr>
<tr>
<td>176°F</td>
<td>1.75</td>
<td>1.25</td>
<td>0.25</td>
<td>2,800</td>
<td>800</td>
<td>4,488</td>
<td>3,299</td>
</tr>
</tbody>
</table>
Creep Characteristics

Figure 17 - Flexural Creep at 80°C
Accelerated DMA Method
Pipelon® 401 vs HDPE

Time, h
Strain, %
Pipelon® 401 500 psi
HDPE 500psi
Critical Flow Rates for DuPont™ Pipelon® 401

Turner Critical Flow Rates for Coil Tubing (OD/ID)

- Pipelon 1.50”/1.00”
- Steel 1.25”/1.076”
- Steel 1.50”/1.31”
- Pipelon 1.75”/1.25”
Identified Risks

• Never used in production tubing configuration
• Creep major concern for “plastic” CT strings
• Installation and hanging
• Buckling/collapse when running into well
• Ability to re-start flow if submerged
Field Deployment

- Ambient temperature was -20°C to -30°C (-5°F to -22°F)
- Conventional coiled tubing unit
- Prior to installation in first well following tests completed
 - Pressure tested
 - Pull tests
 - shear test
 - buckling test
Field Installations

Six Planned
- Two 38.1mm
- Four 44.5mm

Four Installed
- Two 38.1mm
- Two 44.5mm

Conventional Coil Tubing unit for installation
Down Hole Check Valve & Connector

Parts
- Roll On Body
- Straight Bar
- Pipelon CT
- CT Profile
- Pump Off Plug
CT Hanger System

Parts
- Hanger Body
- Secondary Seal
- Re-entry guide
- Slips
Hanging Off Coil
Results

- No difficulties with running coil, no physical damage due to chains
- Hanger equipment performed well
- Have not yet tested for creep or reduction in cross section
- Significant issues during deployment due to well bore blockages (limited ability to push)
- Unable to flow one well (CT submerged in liquid)
Well 1 – Obstruction At 1435 mKB

Unable to regain production.
Will attempt to swab February 2012.

Cum 825, Res 575
Press 2250 kPa
1" ID CT
Land @ 1425 or 1745 mKB
Well 2 – Obstruction But Tubing Landed

Fluid Depth 1768 m
Fluid Depth 1938 m

Cum 400, Res 350
SI Press 6250 kPa
1” ID CT
Planned @ 1970 mKB
Actual @ 1787 mKB
Well 2 – Production History

DuPont™ Pipelon® 401 Installed
Well 3 – Landed On Depth

Cum 725, Res 925
Press 2500 kPa
1.25” ID CT
Land @ 1520 mKB
Well 3 – Production

DuPont™ Pipelon® 401 Installed
Well 4 – Obstruction But Tubing Landed

Cum 356, Res 200
SI Press 2130 kPa
1.25 “ ID CT
First Tag @ 1110 mKB
Land @ 1750 mKB
Well 4 – Production History

DuPont™ Pipelon® 401 Installed
Well 5 – Obstruction Tubing Not Landed

First Tag 504 m
Final Depth 1660 m
Well 6 – Obstruction at 1180 m
Tubing Not Landed
Summary

• **Hanger system**
 - No problems encountered

• **Deployment**
 - Two wells successfully deployed
 - Two wells landed higher due to obstructions
 - Two wells not landed due to obstructions

• **Production**
 - Two wells positive gain
 - One neutral
 - One well submerged not yet unloaded
Improvements for 2012 Program

• Better well selection
 – Insure no ledges
 – Minimize risk of obstructions

• Have ability to unload if submerged
 – Swab capability
 – Portable compressor

• Well head temperature monitoring
 – Identify temp change due to insulation quality

• 7 well program
 – 5 x 1.25” OD
 – 2 x 1.75” OD
Future Opportunities

- Need larger data base of installations
- Better identification of production impact of lower friction factor
- Consider addition of DuPont™ Kevlar® or other materials to modify strength characteristics
- Possible applications for RTP (reinforced thermoplastic piping)
- Possible lined pipe solution
Questions?

Thank you for your participation.
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.