Linear Rod Pump Implementation in a Coal Bed Methane Field

Eric Penner, Production Engineer

BP America
Presentation Outline

• Brief overview of coal bed methane (CBM)
• LRP implementation
 – Benefits
 – Disadvantages
• Questions
US Coal Basins – Where?

- Western Washington
- Powder River
- Illinois
 - Northern Appalachian
 - Central Appalachian
- Warrior
- Arkoma
- Raton
- San Juan
- Piceance
- Uinta
- Greater Green River (Sand Wash)
- Wind River

Ref: GRI

Feb. 19 – 22, 2012
2012 Gas Well Deliquification Workshop
Denver, Colorado
How It Works – Flow Mechanism

Flow Mechanism of Gas in Coal

100 nm

Desorption of methane from coal surface as pressure decreases

2 μm

Diffusion of methane through micro-porosity of coal matrix

1 mm

Two-phase Darcy flow in cleat system
How it Works - Gas as a Function of Pressure

- CBM wells follow the Langmuir Isotherm
- Critical for CBM wells to have low pressures

SOURCE: http://www.fekete.com/software/cbm/media/webhelp/cte-concepts.htm
How it Works – Production Plots

- Gas rate does not peak initially
- “Dewatering” phase usually requires artificial lift
Linear Rod Pump (LRP)

- Recognized a need for artificial lift with:
 - Broad production range
 - Reduced footprint
 - Visual mitigation / aesthetic appeal
 - Quiet operation
- LRP met these requirements
LRP – The Details

- Utilizes a rack and pinion gear driven by a bi-directional electric motor
- Covers 75% of artificial lift needs for San Juan North field
- Utilized for vertical and deviated wells
LRP – The Details

• Equipped with a pump off controller that allows:
 – Different speeds on up stroke and down stroke
 • Aids in gas separation
 – Tagging the pump on a scheduled basis
 • Tag every stroke, 5th stroke, 50th stroke, or not at all; depends on how POC is programmed
LRP – Pros

Pros

• Safer – no externally accessible moving parts
• Less expensive
 – Costs less than C320 pump jack
 – Does not require horses head install & removal or balancing & re-balancing
 – Easy to maintain and repair
 – Easy to move and retrofit
• Neighbor friendly - smaller footprint and extremely quiet
• Versatile - covers range of most cradle to grave rate profiles
LRP Footprint

Total Height:
- 16’ for 56” rack
- 12’ for 20” rack

Feb. 19 – 22, 2012
2012 Gas Well Deliquification Workshop
Denver, Colorado
Where is the LRP?
Cons

- Requires electricity
- Maximum rate does not meet all artificial lift needs
- Not a true “low profile” solution (~16’ total height)
- High viscosity gear oil can be difficult to drain
Summary

• LRP’s are a viable alternative to traditional artificial lift methods:
 – Broad production operating range
 – Noise and visual mitigation
 – Reduced footprint

• Not a solution for all artificial lift problems
 – Rate limitations
 – Height requirements
 – Electricity needed
Questions
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.