Pseudo Steady-State
Plunger Lift Model

Kees Veeken

Shell E&P Europe (NAM B.V.)
Contents

• Reasons
• Assumptions and equations
• Observations
• Conclusions
Reasons

• Selection and justification of (high cost) deliquification measures based on comparison of incremental production and cost profiles

• Outflow models for production forecasting “easily” constructed for steady-state techniques such as velocity string, foam, gas lift and downhole pump

• More complicated for transient techniques such as plunger lift and intermittent production (plunger-less lift)
Production Forecast

- Need to calculate average capacity (Q_{cap}) as function of reservoir pressure (P_{res}), and minimum achievable reservoir pressure (P_{min}) to compare plunger lift against alternatives
 - P_{min} dictates incremental reserves
 - Q_{cap} governs time to recover those reserves
 - Combination determines discounted incremental reserves and costs for economics

- To date plunger modeling has focused mostly on understanding and optimizing plunger cycle, rather than capturing associated production performance
Production Performance – Prolific

Production Performance

- \(P_{\text{min}} \) dictates incremental reserves
- \(Q_{\text{cap}} \) governs time to recover reserves
- Combi determines discounted reserves

1 bara = 14.5 psia, 1e3 m³/d = 35.31 Mscf/d
Production Performance – Poor

Production forecast follows when combined with reservoir model

1 bara = 14.5 psia, $1 \text{e}^3 \text{m}^3/\text{d} = 35.31 \text{Mscf/d}$
Well Model – Three Curves

Inflow – Forchheimer
\[P_{\text{res}}^2 - FBHP^2 = A \cdot Q + F \cdot Q^2 \]

Back Pressure Curve
\[(P_{\text{res}}^2 - FBHP^2)^n = \frac{Q}{C_{\text{res}}} \]
\[C_{\text{res}} = \frac{1}{A} \quad @ \quad n=1 \]

Outflow – Cullender and Smith
\[FBHP^2 = B \cdot FTHP^2 + C \cdot Q^2 \]

Liquid Loading Rate – Turner
\[Q_{\text{min}} = TC \cdot FTHP^{0.5} \cdot ID^2 / [(\text{FTHT} + 273) \cdot Z] \]

\[Q_{\text{cap}} = \left[(A^2 + 4CC + F) \cdot (P_{\text{res}}^2 - B \cdot FTHP^2) \right]^{0.5} \cdot A / 2(C + F) \]

\[P_{\min}^2 = B \cdot FTHP^2 + A \cdot Q_{\min} + (C + F) \cdot Q_{\min}^2 \]

1 bara = 14.5 psia, 1e3 m³/d = 35.31 Mscf/d
Outflow Model – Approximation OK

Transition from “dry” gas well to “wet” gas well takes time
E.g. Q=100e3 m³/d, LGR=100 m³/e6m³, 4” ID ↔ 4 bar/hr
Compression: Q_{cap} Benefit, P_{min} Benefit

1 bara = 14.5 psia, $1 \text{e}^3 \text{ m}^3/\text{d} = 35.31 \text{Mscf/d}$
Velocity String: Q_{cap}, Penalty, P_{min}, Benefit

1 bara = 14.5 psia, 1×10^3 m3/d = 35.31 Mscf/d
Nomenclature

- $P_{res} =$ reservoir pressure
- $P_{min} =$ minimum achievable P_{res}
- $Q_{cap} =$ average well capacity
- $Q =$ gas rate
- $Q_{min} =$ minimum stable gas rate
- $\text{FTHP} =$ flowing wellhead press.
- $\text{FBHP} =$ flowing bottom hole pr.
- $A =$ Darcy inflow resistance
- $F =$ non-Darcy inflow resistance
- $B =$ hydrostatic outflow parameter
- $C =$ friction outflow parameter
- $\text{TC} =$ liquid loading parameter
- $\text{LGR} =$ liquid to gas ratio
- $V_{up} =$ average upward plunger velocity
- $V_{down} =$ average downward plunger velocity
- $T_{off} =$ shut-in period
- $\Delta P =$ liquid load + plunger friction
- $V_t =$ tubing volume
- $V_a =$ annulus volume
- $F =$ plunger frequency
Plunger Lift Cycle

- Cartoon depicts Fekete Virtuewell plunger model

Plunger moves up and down tubing at given velocities V_{up} and V_{down}:

\[Q_{min} \sim FTHP.ID^2.V_{up}, T_{off} > T_{down} \]

On = Up

After Flow

Off = Plunger Down + Buildup Period

Legend:
- Csg Press
- Tbg Press
- Line Press
- WH Gas Rate
- BH Gas Rate
Plunger Lift Cycle

- **ON (UP) – AFTER FLOW – OFF (BUILDUP)**

\[Q_{min} \text{ is delivered by reservoir inflow } Q \text{ plus blow down of annulus volume if } Q < Q_{min} \]

Up & Start Buildup

\[Q = \frac{[A^2 + 4(C+F)(P_{res}^2 - (B^{0.5}THP + DP)^2)]^{0.5} - A}{2(C+F)} \]

After Flow

\[Q = \frac{[A^2 + 4(C+F)(P_{res}^2 - (B^{0.5}THP + DP/2)^2)]^{0.5} - A}{2(C+F)} \]
Plunger Lift Cycle

- **ON (UP) – AFTER FLOW – OFF (BUILDUP)**

Pressure buildup ΔP during Off period is just sufficient to generate required annulus decompression volume.

Difference between Q_{cap} and Q_{min} is delivered by annulus decompression volume $V_a \times \Delta P$.

$$
\Delta P = (P_{\text{res}} - B^{0.5} \cdot \text{FTHP} - \text{DP}) \cdot [1 - \exp(-c \cdot T_{\text{off}} - 0.3 \cdot c^2 \cdot T_{\text{off}}^2)]
$$

where

$$
c = 1 \times 10^3 \frac{Q}{(V_a + V_t) \cdot (P_{\text{res}} - B^{0.5} \cdot \text{FTHP} - \text{DP})}
$$

and

$$
Q = \frac{\{A^2 + 4 \cdot (C + F) \cdot (P_{\text{res}}^2 - (B^{0.5} \cdot \text{THP} + \text{DP})^2)\}^{0.5} - A}{2 \cdot (C + F)}
$$
Plunger Lift – No Annulus Support

1 bara = 14.5 psia, 1e3 m³/d = 35.31 Mscf/d
Plunger Lift – Annulus Support

1 bara = 14.5 psia, 1e3 m³/d = 35.31 Mscf/d
Plunger Modeling

• Liquid load x plunger frequency F equals produced liquid volume $LGR \times Q_{cap}$

• Calculate maximum Q_{cap}, F, T_{off} and ΔP by varying DP

• Calculate maximum Q_{cap}, F, ΔP and DP as function of reservoir pressure P_{res}

• Show impact of inflow performance, annulus volume, liquid production, inflow performance and wellhead pressure

• Ignore complexity and transient nature of plunger cycle, including plunger friction, plunger by-pass, annulus friction and varying plunger velocity!
Vary Liquid Load DP to Maximize Q_{cap}

1 bara = 14.5 psia, $1 \text{e3 m}^3/\text{d} = 35.31 \text{Mscf/d}$
Small Annulus Volume – $V_a = 4 \ m^3$

1 bara = 14.5 psia, $1 \times 10^3 \ m^3/d = 35.31 \ Mscf/d$
Large Annulus Volume – $V_a = 100 \text{ m}^3$
Medium Annulus Volume – $V_a = 20 \text{ m}^3$

1 bar = 14.5 psia, $1\text{e}3 \text{ m}^3/\text{d} = 35.31 \text{Mscf/d}$
Vary LGR @ $P_{\text{res}} = 62$ bara

Frequency, liquid load and associated capacity loss increase as LGR increases.

1 bara = 14.5 psia, 1×10^3 m3/d = 35.31 Mscf/d
Vary LGR @ $P_{res}=40$ bara

1 bara = 14.5 psia, $1e3$ m3/d = 35.31 Mscf/d

P_{min} increases as LGR increases
Plunger causes deferment in prolific wells

Before $Q_{\text{min}} = 46.9 \times 10^3 \text{m}^3/\text{d}$
After $Q_{\text{min}} = 31.7 \times 10^3 \text{m}^3/\text{d}$ (68%)
Vary A @ FTHP=5 bara

Before $Q_{\text{min}} = 19.2 \times 10^3 \text{m}^3/\text{d}$
After $Q_{\text{min}} = 6.3 \times 10^3 \text{m}^3/\text{d}$ (33%)

1 bara = 14.5 psia, $1 \times 10^3 \text{m}^3/\text{d} = 35.31 \text{Mscf/d}$

Plunger most effective at low FTHP
Observations

- Gas rate shows broad maximum Vs liquid load
- Suggests that plunger settings are quite forgiving

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P_{min} Benefit</th>
<th>Q_{cap} Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annulus Volume</td>
<td>Increases</td>
<td>(Decreases)</td>
</tr>
<tr>
<td>LGR</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
<tr>
<td>Inflow Resistance</td>
<td>Increases</td>
<td>Decreases</td>
</tr>
<tr>
<td>FTHP</td>
<td>Decreases</td>
<td>(Increases)</td>
</tr>
<tr>
<td>V_{up}</td>
<td>Decreases @ low V_a</td>
<td></td>
</tr>
<tr>
<td>V_{down}</td>
<td></td>
<td>Decreases</td>
</tr>
</tbody>
</table>
Conclusions

• Need pseudo steady-state plunger model to rank plunger against alternative techniques
• Capture plunger performance by using simplest of inflow and outflow models
• Make crude assumptions in the process
• Need to validate model against field results
• Plunger best suited for poor inflow and low liquid-gas ratio
• Plunger performance benefits from significant annulus volume and low wellhead pressure
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.