A Unique Multifunctional Foamer for Deliquification of Loaded Wells in Canada

Duy Nguyen and Frank Cosman, Nalco Company
&
Richard Tomlins, Encana Corporation
Greater Sierra: Field Overview

- 800 Horizontal wells, 140 MMscfd
- Water gas ratio = 11-18 liters/1000m³ gas
- Condensate gas ratio = 5-15 liters/1000m³ gas
- Condensate water ratio = 0 to 2:1
- Salinity = 0 to 300,000 ppm
- Wet muskeg terrain, -40°C during the winter
Nature of Liquid Loading

Combination of factors:

- Reservoir depletion
- Water of condensation and formation water
- Liquid slugging
- Potential for static column of water in the wellbore
Deliquification Strategy

- Intermittent flow: Some wells may be shut in 75% of the time in order to build pressure to lift liquids.
- Plunger: Used in over 300 wells. Require additional operator time and maintenance.
- Velocity strings: Used in over 200 wells. Difficulty handling large hydrostatic caused by liquid slugs and are prone to corrosion.
- Unsuccessful field trial of previous incumbent’s foamer in 2007 on 10 wells with capillary strings. The foamer could not handle condensates.
- The use of foamers was revisited by Encana and Nalco in 2008 as Nalco had successfully used condensate foamers with other gas producing companies.
Advantages of Foamers

• Can be injected down the casing-tubing annulus – much deeper than the plunger. However, to be effective, the foamer has to reach and generate foam at the end of the tubing, preventing accumulation of liquids above the tubing.

• Low cost of the failure if the program proves to be unsuccessful. The cost of failure for a foamer is about $5,000 vs. $30,000 for a plunger lift install or $75,000 for a velocity string install.
Foamer Development: Criteria for Success

- Effective in the presence of 50% condensate with fresh water or brine
- Quick foam collapse at the well head
- A combination foamer product that contains corrosion inhibitor and scale inhibitor
- Foamer is stable and pumpable at -43°C
- Foamer is compatible with HDPE, stainless steel, and various elastomers
Typical Surfactants

• Nonionic:
 – More soluble at lower temperature
 – Increase temperature &/or salt concentration reduces solubility – lowers cloud point
 – Good for wells with unknown water chemistry

• Anionic
 – Excellent aqueous foamers
 – Highly polar
 – Can be affected by high brine solutions
 – At elevated temperatures can degrade

• Cationic
 – Good for foaming water/oil mixtures
 – Efficacy dependant on molecular weight
 – Can be prone to emulsion issues

• Amphotheric
 – Very versatile: Higher condensate tolerance
 – Good high temperature performance and stability
 – Effective in high salt content brines
Laboratory Testing

Impact of Salinity on Foaming Performance
50% condensate with 10000 ppm Foamer
5 scfh Nitrogen Flow Rate

Result: Foamer was effective in 50wt% condensate with chlorides > 4500 ppm
Foam Stabilizing: Area per molecule

Packing at the air-liquid interface

- Low salt
 - Unstable foam
 - Loosely packed film
 - High area per molecule
- High salt
 - Stable foam
 - Tightly packed film
 - Small area per molecule

Feb. 19 – 22, 2012
2012 Gas Well Deliquification Workshop
Denver, Colorado
Foam Destabilizing – Reduced Electrostatic Repulsion

Low salt

Stable foam

High salt

Liquid flows

Unstable foam

Liquid flows

Drainage

Feb. 19 – 22, 2012

2012 Gas Well Deliquification Workshop
Denver, Colorado
Laboratory Testing - Results

• Unloading efficiency results vary with brine/condensate composition

• For all samples the amphoteric surfactant showed greater potential for lifting fluids of various concentrations when compared with nonionic (alkyl poly glucoside) and anionic (sulfossucinate, alkyl diphenyloxide disulphonate) foamers

• Quick foam collapse was observed for the amphoteric foamer

• Good separation for water and condensate (i.e., unstable emulsion) was observed
Corrosion Inhibition: Linear Polarization Resistance Data

Graphs:
- **Left Graph:**
 - Decreased due to formation of a protective film
 - Final 63 mpy
- **Right Graph:**
 - Steep slope is an indication of a quick filmer
 - Final 0.06 mpy

Table:

<table>
<thead>
<tr>
<th>Cell</th>
<th>Weight Loss (mg)</th>
<th>Weight Loss Corrosion Rate (mpy)</th>
<th>Final Pit Depth (mils)</th>
<th>Final Fitting Rate (mpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>45.9</td>
<td>26.8</td>
<td>0.5</td>
<td>46.1</td>
</tr>
<tr>
<td>EC7029A (2500 ppm)</td>
<td>1.5</td>
<td>0.8</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EC7029A (15,000 ppm)</td>
<td>1.3</td>
<td>0.7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Gravimetric Results Sweet Conditions

Feb. 27 · Mar. 2, 2011

2011 Gas Well Deliquification Workshop Denver, Colorado
Corrosion Inhibition: Electrode Photographs

Blank

Treated
In 2009, eight (8) wells were identified for foamer applications based on the following criteria:

- A large database of LGR data.
- Multiple condensate and water analyses.
- Many years of production information and well pressure profiles.
- Operator experience with wells.
- Comparatively easy access to the well sites – a key requirement.
- Suitable well trajectory profile with no liquid trap before the end of the tubing

Injection down casing on all wells
Initial results very encouraging

<table>
<thead>
<tr>
<th>Status</th>
<th>Well</th>
<th>Production Uplift (e3m3/d)</th>
<th>Comment</th>
<th>Forward Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working</td>
<td>#1</td>
<td>4.6</td>
<td>2nd Lowest WGR (15 l/e3m3), some condensate (2%)</td>
<td>Optimize soap injection rate downward</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>2.0</td>
<td>Highest WGR (96 l/e3m3), no condensate</td>
<td></td>
</tr>
<tr>
<td>Positive Response</td>
<td>#3</td>
<td>1.5</td>
<td>2nd Highest WGR (68 l/e3m3), no condensate</td>
<td></td>
</tr>
<tr>
<td>(long flow periods)</td>
<td>#4</td>
<td>0.9</td>
<td>4th Highest WGR (48 l/e3m3), highest CLR (15%)</td>
<td>Optimize soap injection rate upward</td>
</tr>
<tr>
<td></td>
<td>#5</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#6</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Working</td>
<td>#7</td>
<td>2.1</td>
<td>3rd Highest WGR (51 l/e3m3), no condensate</td>
<td>Optimize soap injection rate upward. Capillary string candidates</td>
</tr>
<tr>
<td>(no response to soap)</td>
<td>#8</td>
<td>-1.2</td>
<td>Lowest WGR (8 l/e3m3), no condensate, large water trap</td>
<td></td>
</tr>
</tbody>
</table>

Feb. 19 – 22, 2012

2012 Gas Well Deliquification Workshop
Denver, Colorado
Soap Injection Summary

<table>
<thead>
<tr>
<th>Status</th>
<th>Well</th>
<th>On-Time Increase (%)</th>
<th>Production Uplift (e3m³/d)</th>
<th>Injection Rate (litres/d)</th>
<th>Net Incremental Income ($/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>50 to 100</td>
<td>1.9</td>
<td>4</td>
<td>162</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>33 to 100</td>
<td>1.6</td>
<td>4</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>26 to 99</td>
<td>1.2</td>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>38 to 100</td>
<td>0.8</td>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>39 to 79</td>
<td>1.2</td>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>31 to 60</td>
<td>0</td>
<td>4</td>
<td>-99</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>22 to 59</td>
<td>0.3</td>
<td>10</td>
<td>-66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFE Amount: $345k
Estimated Spend: $268K

Feb. 19 – 22, 2012
2012 Gas Well Deliquification Workshop Denver, Colorado
Results: Process Benefits

• No foam carryover in the vessels
• No emulsion issues noted
• Field trialled 8 wells in 2009; 38 wells in 2010; and began 37 more wells in 2011 with a success rate of 70%
• Batch treat many other wells as needed
Challenges

- High condensate to water ratio
- Salinity varies from well to well (e.g., fresh water to nearly saturated brine)
- Difficult to deliver foamer into the horizontal section due to liquid traps that occur a short distance from the horizontal section. There is not enough energy to cause foaming in that section and the liquids cause a flow restriction in the tubing or open hole area.
Way Forward

• Implement monitoring program to evaluate performance of foamer’s corrosion inhibition properties. If successful, significant cost savings could be realized.

• Ongoing expansion of foamer injection program.

• Possible continuous injection through capillary string installation to ensure the delivery of foamer through the liquid traps.

• Continued observation at the gas plant for potential foaming issue as more wells will be on foamer (today only about 7% of the wells are on foamer).
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.