New Technologies to Expand Foamer Applications

Stella Debord, Sr. Research Chemist
Baker Hughes Inc.

stella.debord@bakerhughes.com
1. Introduction
 • Benefit of foamer application in gas wells
 • Current foamer technology and gap

2. Offshore foamer applications
 • Challenges in offshore applications
 • Successful condensate foamer application

3. New crude oil foamer to increase oil and gas production
 • Product development and lab evaluation
 • Successful oil foamer application

4. Conclusions
Flow Regime Change of a Well

Flow - The Life of a Gas Well
The consequences of depletion in a gas well

Gas Production Rate

Time

Annular Flow
Benefits of Foamer Applications

• Without removing liquid, the production decreases rapidly and ceases prematurely.

• Deliquification technologies enhance gas production and $$$.

• Foamers are simple and economic technologies for low producing wells.

• No downhole equipment is required.

• Can be used with gas lift or plunger lift to enhance production further.
How Do Foamers Work?

• Foamer reduces critical velocity (V_t) that is needed to lift the fluid up the production tubing by reducing the density and surface tension of liquid.

$$V_t = 1.593 \left[\sigma^{1/4} (\rho_l - \rho_g)^{1/4} \right] / (\rho_g)^{1/2}$$
Gap in Current Foamer Technology

- Water based foamers are cost effective deliquification technology for on-land wells.
- Foamers have not been applied offshore often.
- Traditional foamers are not cost effective to treat crude oils.
Offshore Thailand gas wells experience fluid loading issues

- Reaches critical rate after 2 – 3 years
- Current solution – wells flow intermittently
- No artificial lift currently in place
- Wells shut in due to fluid loading
Challenges in Offshore Applications

- Offshore wells have a surface safety valve and subsurface safety valve
- Capillary can not be hung from the top of a standard wellhead like typical land wells installations
1. Modified WRSCSSV
 • Provides chemical flow path around flapper valve
 • SCSSV still fully functional
 • No workover required

2. Wellhead Adapter
 • Capillary hung below all tree valves
 • Still have access to BPT
 • Maintain fully functionality of wellhead
Installation Equipment
InjectSafe® Safety Valve
Offshore Foamer Application in Thailand

• Performed trials on 3 wells in Gulf of Thailand in January 2009
• Ran capillary to set depth and pumped foamer while flowing the well for several days
• Results were promising and led eventually to a permanent installation
• Example presented is from Funan Field, Well #9
 o Fluids produced > 80% condensate
Successful Condensate Foamer Application

Condensate foamer application increased gas production by unloading well fluids.
Requirements for Oil Foamer Development

✓ Identify appropriate chemistry to foam crude oil
 • Formulated for different application methods
 • Ensure chemical stability in well bore environment
 • Pose no impact on integrity of asset
 • Perform in wide range of oils
Oil Foamers for Different Applications

<table>
<thead>
<tr>
<th></th>
<th>Oil foamer A</th>
<th>Oil foamer B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas lift application?</td>
<td>Yes *</td>
<td>No</td>
</tr>
<tr>
<td>Capillary approved up to</td>
<td>300 °F</td>
<td>200 °F</td>
</tr>
</tbody>
</table>

- Oil foamer A passed gunking test.
Impact on Asset Integrity Was Evaluated

- Verified material compatibility using common materials used in assets
 - Metals – Not corrosive to aluminum, copper, mild steel, SS304, SS316
 - Plastics – Compatible with Teflon, HD polyethylene, linear Polyethylene, HD polypropylene
 - Elastomers – Compatible with Viton, Hypalon, EPDM rubber
Candidate Evaluation Process

- Dynamic foam column tests simulate both batch and continuous treatment
- Tested at system temperature and production rate by controlling flow rate
Foamer Reduces Density Significantly

- Foamers expand the volume of fluids significantly, i.e. the reduction of density of fluids.
- Temperature and flow rate were set to simulate the well conditions.
Oil Foamers Evaluated in Different Samples

<table>
<thead>
<tr>
<th></th>
<th>Well #1</th>
<th>Well #2</th>
<th>Well #3</th>
<th>Well #4</th>
<th>Well #5</th>
<th>Well #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil production, BOPD</td>
<td>1630</td>
<td>600</td>
<td>850</td>
<td>50</td>
<td>340</td>
<td>315</td>
</tr>
<tr>
<td>Water production, BWPD</td>
<td>20</td>
<td>30</td>
<td>90</td>
<td>50</td>
<td>185</td>
<td>270</td>
</tr>
<tr>
<td>API gravity</td>
<td>30</td>
<td>33.5</td>
<td>32</td>
<td>40</td>
<td>34.5</td>
<td>36.3</td>
</tr>
<tr>
<td>Bottom hole temperature, °F</td>
<td>137</td>
<td>192</td>
<td>133</td>
<td>300</td>
<td>183</td>
<td>168</td>
</tr>
<tr>
<td>Gas lift application?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oil foamer tested</td>
<td>Oil foamer B</td>
<td>Oil foamer A</td>
</tr>
<tr>
<td>Recommended foamer dosage, ppm</td>
<td>5,000</td>
<td>2,000</td>
<td>1,000</td>
<td>1,500</td>
<td>2,500</td>
<td>500</td>
</tr>
<tr>
<td>Oil foamer effective?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Oil foamers were evaluated in different samples.
- The recommended dosage is based on lab tests. The dosage would be optimized during the field application.
Product Development Summary

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Method</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel oil soluble chemistry</td>
<td>Patent pending</td>
<td>✓</td>
</tr>
<tr>
<td>Foamer performance evaluation</td>
<td>Dynamic foam column tests</td>
<td>✓</td>
</tr>
<tr>
<td>Chemical stability</td>
<td>Capillary test and gunking test</td>
<td>✓</td>
</tr>
<tr>
<td>Asset integrity</td>
<td>Material compatibility tests</td>
<td>✓</td>
</tr>
</tbody>
</table>
Successful Oil Foamer Field Trial

EOG Resources South Texas Oil Well
Requirements for Successful Applications

- ✔ Determine potential success as a foamer application
 - Well information
 - FOAM modeling
 - Performance evaluation
- ✔ Defoamer controls foam issue effectively
Well Information

<table>
<thead>
<tr>
<th>Days of production$^{(1)}$</th>
<th>7 days on/7 days off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Depth, feet$^{(2)}$</td>
<td>13,000</td>
</tr>
<tr>
<td>Gas production, Mcf/D</td>
<td>250</td>
</tr>
<tr>
<td>Oil production, BOPD</td>
<td>40</td>
</tr>
<tr>
<td>Water production, BWPD</td>
<td>40</td>
</tr>
<tr>
<td>API gravity, °</td>
<td>40</td>
</tr>
<tr>
<td>Bottom hole temperature, °F</td>
<td>300</td>
</tr>
</tbody>
</table>

$^{(1)}$A water based foamer was injected continuously.

$^{(2)}$The capillary is installed closed to perforation and good mixing of produced fluids and foamer is expected.
Foam Modeling

- Baker Hughes’ proprietary software
- Calculate gas velocity (V) and gas critical velocity (V_t)

Above 1 means the well is unloaded
Below 1 means the well is loaded

$V_t << V$ Well flows

$V_t >> V$ Well loaded up
Foamer Evaluation to Determine Dosage

- Flow rate and temperature for testing simulate the well condition.
- The recommended dosage is 1,500 ppm. The dosage needs to be optimized during field application.
Defoamer Evaluation for Foam Control

- Defoamer X was most effective product.
EOG Field Trial-Production Data

- Oil foamer dosage was optimized to 750 ppm
- Defoamer dosage was optimized to 750 ppm
- Rag tests confirmed that defoamer controlled foam issue

Oil Foamer injected 7/26/10
EOG Field Trial-Summary

<table>
<thead>
<tr>
<th></th>
<th>Before oil foamer(^{(1)})</th>
<th>After oil foamer</th>
<th>No foamer at all(^{(2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days of production</td>
<td>7</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Gas production, Mscf/D</td>
<td>122</td>
<td>400</td>
<td>192</td>
</tr>
<tr>
<td>Oil production, BOPD</td>
<td>13</td>
<td>100</td>
<td>24</td>
</tr>
</tbody>
</table>

\(^{(1)}\) A water based foamer was injected continuously.

\(^{(2)}\) The data was collected after cutting off oil foamer A.
Conclusions

1. Foamer technology has extended to treat condensates and crude oils.
2. InjectSafe® solved the challenge in foamer offshore applications.
3. Successful field trial proves that the new crude oil foamer enhances both oil and gas production.
Acknowledgement

- Thailand field trial: Mark Embrey
 Mark.embrey@bakerhughes.com

- EOG field trial:

 Carlene Means Scott Lehrer Simon Crosby Jeff Long
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.