Implementation of foam in the North Sea

Gert de Vries, Production Chemist
NAM
The Netherlands

Colorado is 6.5 times bigger than NL

In NL 3.6 times more citizens
• NAM operates most of the Gas fields in the Netherlands

• Yearly (2009) production of approx 70 BCM (2.5 TCF)

• Over 50% of all natural gas reserves of the European Union
NAM wells

• +/- 400 wells onshore
• +/- 300 wells offshore
• Typical tubing sizes 3 ½ ″, some 5″ or even 7″
• Liner sizes are between 4 ½ ″, 7″ and 9 5/8″
• All wells have SSSV’s (on and offshore)
• All wells have packers
• Typical reservoir depth is approx 10000 ft
• Mainly sand stone and some carbonate reservoirs

• Most small fields are mature and suffer from LL
Gains achieved with foam

Yearly gains from Batch & Continuous FOAM

- Offshore Continuous foam
- Offshore Batch foam
- Onshore Continuous Foam
- Onshore Batch Foam

Million Nm³ Gas

BCF Gas

2003 2004 2005 2006 2007 2008 2009 2010 2011

3.5
7
10.5

More than 30% of total 300 gas wells are currently liquid loading. GWD can increase ultimate recovery by 1-10%.

Southern North Sea (NL and UK)

ONEgas West (UK)

ONEgas East (NL)
Challenges applying foam Offshore

- **Normal product requirements as onshore**
 - performance, stability, corrosiveness, antifoam

- **Additional requirements**
 - Minimum impact on oil in water
 - Minimum impact on water in natural gas condensate

- **Permits/product registration**
 - CEFAS/MSDS/Toxicity
 - Location permit
Initial Batch treatments Offshore

Foam treatments 2008/2009

- Approx 20 wells batch treated
- Looking at production increase, foam was applied successfully

![Bar chart showing gas flowrate gain before and after foam treatment for Well A (batch), Well B (batch), and Well Continuous.](image-url)
Side effect Batch Foam treatments

Offshore location UK: 2009 av. Oil in Water (OIW)

- **Av. OIW (mg/L)**
- **Legal limit (30 mg/L)**
- **Water discharged (m³/day)**

Time (days):
- 4-Apr-09
- 5-Apr-09
- 6-Apr-09
- 7-Apr-09
- 8-Apr-09
- 9-Apr-09
- 10-Apr-09
- 11-Apr-09
- 12-Apr-09
- 13-Apr-09
- 14-Apr-09
- 15-Apr-09
- 16-Apr-09
- 17-Apr-09
- 18-Apr-09
- 19-Apr-09
- 20-Apr-09
- 21-Apr-09
- 22-Apr-09
- 23-Apr-09
- 24-Apr-09
- 25-Apr-09
- 26-Apr-09
- 27-Apr-09
- 28-Apr-09
- 29-Apr-09
- 30-Apr-09

Oil in Water (OIW) (mg/L):
- Trail begins
- Trial ends

Legal limit (30 mg/L)

Water discharged (m³/day)

Legal limit (30 mg/L)
Mitigation strategy for OIW

Water clarifier selected to overcome OIW issues

- Tests using fluid from the field
- Screened chemical → selected best fit
- Field trial → chemical tested on location by dedicated field engineer
Is there a differentiator between foamers

Surface injection trial (2010)

- Main location with water disposal well
- 4 different foam products
- Water production and Oil in water was monitored
Effect on OIW vs foam product

Surface injection trial (2010)

- Each Foam product was injected at 2 rates
- All affected the oil in water, there is a minor difference
- Effect on OIW is dependent on concentration of foam

![Oil in water over board during foam trial](chart.png)

Oil in water over board during foam trial
(samples taken after trial with foam product @ 25 and 50 l/d)

- Product a
- Product b
- Product c
- Product d
- Historic average
Effect of foam on centrifuge performance

Surface injection trial (2010)

- Centrifuge baseline efficiency approx 95%
- All foamers reduced centrifuge efficiency

![Bar chart showing centrifuge efficiency at approx 125 ppm foam](chart.png)
Approx 30% of total 300 gas wells are liquid loaded

Screening of wells identified best deliq solution

- Velocity string selected for approx 50%
- Continuous foam for the other 50%
 - OIW is affected by foam
 - Water disposal wells identified as most reliable option
 - Further investigation (lab) on effect different foam products
Deliquification project Offshore

Wells where continuous foam identified as best deliquification technique
Deliquification project Offshore

- Offshore:
 - Isolated foam flow path
 - No corrosion risk
 - Less restriction on foam product selection
 - One injection valve
 - Higher equipment cost

- Land:
 - Uses existing SSSV control line
 - Two injection valves
Deliquification project Offshore

Standardized Foam injection system

Size of system is approx 4 x 4 x 4 ft
Deliquification project Offshore

First well running with new developed foam delivery system

- Successful foam application
- Water production increased (future handling under discussion)
- Water disposal well became unavailable
- Limited foam injection rate reduced production

![Graph showing FTHP (bar), FTHT (°C), Foam injection (l/h)]

Deliquification project Offshore

Extra OIW data due to unavailable disposal well
SUMMARY

• Foam can be applied extremely successfully Offshore
• Foam (anti-foam) impact on oil in water
• A continuous foam injection allows better control of the oil in water
• Application is limited to locations with produced water re-injection wells (further study will done)
• Standardisation of hardware reduce costs
• Deliquification may create problem with water handling capacity
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

– Display the presentation at the Workshop.

– Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.

– Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.