Unlocking the Value in your Production Control System

Gary Silverman
SCADA Engineering Manager – Bill Barrett Corporation
Things I have learned

• Things I will NOT be talking about……..
A Manufacturing Model for Upstream O&G
Intelligent Field Devices

- Performance Diagnostics
- Travel Deviation
- Cycle Counter
- Valve Signature
- Step Response
- Dynamic Error Band
- Drive Signal
- Output Signal

- Electronics Failure
- Density Out of Limits
- Temperature Out of Range
- Slug Flow
- Frequency Output Saturated
- Security Breach
- Enhanced Density Alarm

- RTD Drift
- RTD Life Estimation
- Electronics Failure
- Sensor Failure
- Process Condition
- Configuration Warning

- Electronics Failure
- Sensor Failure
- Reverse Flow
- Low Cut Off
- Primary Value Degraded
- Simulation Active
- Sensor Out Of Range
Biography

- BSME – 1982, San Diego State University
- 30 Year’s Experience in Controls, Automation and Systems Integration (mainly Process Industries)
- Most recently:
 - July 2011 →: Bill Barrett Corporation – SCADA Engineering Manager

e: gsilverman@billbarrettcorp.com
m: 720-556-1858
As-Found State

- Architecture did not provide for Autonomy of Basin Systems for Operations or Data Integrity for Corporate Users
- Inadequate security:
 - Generic Operator Logons/Shared Workstations
 - Security not configured by role
- Backup Strategy required improvement
- Still running 2 yr. old release of SCADA System – latest release improved database integrity, performance, polling improvements, etc.
- Various RTU/SCADA Services Vendors – little collaboration between them
As-Found State

• Various approaches to SCADA configuration (no common standards between basins) – some templating had been implemented
• Some common approaches to Pad Automation/Measurement (Fisher), but no standard for instrumentation or Pad Wireless
• Expensive instruments – no gain for the extra $
• Significant number of configuration errors in systems – these caused performance and data integrity problems
As-Found State

- Expensive Radios/Poor Polling Schemes and Radio Network Design
- Well/Pad/RTU Naming Conventions differed by Basin
- Graphics did not serve any User Group well
- Poor Data Integrity/Low Trust of System by Users
- Poor Graphic/Facility Navigation
- No Internal Ownership of Platforms (RTU, Pad Automation, SCADA, Comms)
- No use of Alarming or Callout
Cost Savings Opportunities

- Lower overall cost of equipment, installation and maintenance by leveraging ‘fit for purpose’ instruments, ‘right sized’ RTUs and appropriate wireless technology on well pads
- Fewer trips to a pad for Pumpers by improving focus on issues and wells that need attention – mainly by having additional data, trending and improved graphics
- Improved well optimization through leverage of existing Plunger and Gas Lift Programs in RTU and better data integration/visibility
Architecture – As Found State
Architecture – Current State

BBC Production Management System
CygNet Detailed Architecture - Current

- Backups
 - Backup 1
- Client
 - Replication
 - Parachute: Replicated SCADA/VHS
 - Waltman: Replicated SCADA/VHS
 - Roosevelt: Replicated SCADA/VHS
 - Greeley: Replicated SCADA/VHS
- Polling
 - SILT Domain 20217
 - SCADA Server SIL08-CYG
 - Client
 - Waltman Domain 20217
 - SCADA Server CAS02P-CYG
 - Client
 - Roosevelt Domain 20217
 - SCADA Server RS08-CYG
 - Client
 - Greeley Domain 20217
 - SCADA Server GE08C-CYG
 - Client

Access Database

Volumes

2/25/2012
RTU Platforms/Capabilities

ROC800 RTU
- Up to 12 Meter Runs
- 6 Comm Ports (incl. LCD)
- Up to 6 Plunger Wells AND 6 Injection Meters
- 16 PID Loops
- GC Interface
- Logic Capabilities
- Up to 256 I/O
- Hart/Fieldbus Capable
- Always Custom Enclosure
- Factory LCD, IDEC, Proface

FloBoss 107 RTU
- Up to 4 Meter Runs
- 5 Comm Ports (incl. LCD)
- Up to 4 Plunger Wells (or Gas Lift, Fuel Gas, Sales Meters, etc.)
- 8 PID Loops
- GC Interface
- Logic Capabilities
- Up to 56 I/O
- Hart Capable
- Factory Enclosure
- Factory LCD
- Integral Sensor available
Improved Installation Practices

- Standard Panel Designs by Application/RTU Type
- Improved Installation Process and Speed of Installation
- Documented Commissioning Procedures
Current Panel Layouts and Install Details

2/25/2012

2012 Gas Well Deliquification Workshop
Denver, Colorado
Wireless Wellheads and Pad Instrumentation

WIO Base Unit
- RS485 Port
- RS 232/485 Port
- Modbus Master/Slave
- Comms to RTU/PLC
- Peer Comms to other Base Units
- 2 DI, 2 DO, 4 AI
- Expands to 256 I/O

DH2 Base Unit
- RS 232/485 Port
- Modbus Master/Slave
- Comms to RTU/PLC
- Peer Comms to other Base Units

Temperature Transmitter
Pressure Transmitter
Discrete Transmitter
Tank Level Transmitter
Tank High Level Switch

2/25/2012
2012 Gas Well Deliquification Workshop
Denver, Colorado
Wireless Quad Example
RTU with Wireless Instrumentation-16 (up to n) Well Pad
Scalability with Shared Facilities

CTB

Pad 1

Pad X
Gas Lift - Wireless Data Communications
Gas Lift - Technology Leverage

- Prior Gas Lift Pads only had fixed chokes or PID control of Injection
- Utilization of Separate RTUs and Data Comms allows Optimization of Injection to Economize Injection Gas or Maximize Sales

Results:

Predictable 850 MCF/D vs. 600 MCF/D prior to Gas Lift
SCADA Communications

- Ethernet Radio Network to the Wellhead
- Very fast, but poor polling performance

WHY?
• TCP/IP sessions are opened with all endpoints at once
• No way to ‘throttle’ comms
• Overwhelms radio network bandwidth
• Overwhelms SCADA – Disk I/O, Memory, etc.
• Overwhelms SQL DBs for Volume Data
• Results:
 – Poor polling performance
 – Low Data Integrity
 – Lots of missing trend data and volume data
SCADA Communications – Solution

TCP/IP MULTIPROPOINT DEVICE
• We also conducted a Radio Coverage Study (NOT a ‘Path’ Study) and developed a Communications Strategy

• Results:
 – Reorganized Radio Network
 – Installing 3 New Repeaters, retiring existing
 – Implementing a High Speed Backbone

NO Missing Trend or Volume Data
Backbone and RF Coverage

[Map and diagram showing Backbone and RF Coverage]

2/25/2012

2012 Gas Well Deliquification Workshop
Denver, Colorado
SCADA Upgrade Principles

• ‘One Click to Data’
• No Reports outside the System
• We can always start over!

This is NOT Burger King
SCADA Security

Role Based
- Pumper
- Supervisor
- Manager
- Engineer
- Field Measurement
- Corp. Measurement
- Field Technicians
- System Administrators

By Basin
- Piceance
- Uinta
- Wind River
- Denver Julesberg

Functions Managed
- System Access
- Screen Access
- Facility Access
- Data Access
- Setpoint/Alarm Changes
- Meter Configuration Changes
- Device Configuration Changes
- System Configuration Changes

INTEGRATED WITH NETWORK SECURITY!

2/25/2012
Data Acquisition/Polling – Standards

• ‘Spot Flow’ Data – once/hour:
 – DP, SP, T, Rate
 – Casing, Tubing
 – Tank Levels
 – Today’s Volume, Y’Day Volume

• Trend Data – once/hour:
 – 1 Minute Averages
 – DP, SP, T, Rate
 – Casing, Tubing
 – Environmental Data
Group Hierarchy/Facility Navigation

- Company
- Business Unit
- Basin
- Area
- Field
- Business Route
- Pumper Route
- Pad
- Hauler Route (Tanks)
Naming Conventions

- Accounting number used as part of Facility ID for all meters/wells
- Legal Well Names/Pad Names used for Displays
- All Meters have ‘Type’ – Well, Gas Lift, Fuel Gas, Buyback, Sales, Check, Flare, Station Inlet, etc.
Enterprise System/Basin Navigation

Enterprise Cygnet SCADA

Bill Barrett Corporation

HOST TIME: 10:21:11 AM

Denver Office DJ Basin Piceance Basin Uinta Basin Wind River Basin
Well Summary

WELL SUMMARY - GAS LIFT

| Field | Pod | Area | Rate MCFD | Today MCF | Today Net MCF | Taking PSI | Setting PSI | Bill in HDD | Static PSI | Gas Temp | Today HRS | YDay HRS | Month HRS | Notes | Week trend |
|-------|-----|------|-----------|-----------|--------------|------------|-------------|-------------|------------|----------|----------|----------|----------|----------|-------|------------|
| MTRFUEL | 5 | 7 | 76.73 | 6.70 | 30.31 | 80.60 | 59.39 | 2.09 | 18.46 | 121 | | | | | |
| | 5 | 5 | 76.73 | 6.70 | 30.31 | 80.60 | 59.39 | 2.09 | 18.46 | 121 | | | | | |
| MTRINJ | 146.11 | 156.48 | 156.48 | 156.48 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |
| MTRINJ | 146.11 | 156.48 | 156.48 | 156.48 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |
| MTRINJ | 146.11 | 156.48 | 156.48 | 156.48 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |
| MTRINJ | 146.11 | 156.48 | 156.48 | 156.48 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |
| MTRNL | 1,640.14 | 2,301.93 | 2,301.93 | 2,301.93 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |
| MTRNL | 1,640.14 | 2,301.93 | 2,301.93 | 2,301.93 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |
| MTRNL | 1,640.14 | 2,301.93 | 2,301.93 | 2,301.93 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |
| MTRNL | 1,640.14 | 2,301.93 | 2,301.93 | 2,301.93 | 0.00 | 12.79 | 13.78 | 200.43 | 399.96 | 0.84 | 87.89 | 78.81 | 0.40 | 4.21 | 58 |

Host Time: 10:23:12 AM
Well Detail
Selectable Trends
Reporting
System Diagnostics
Historical Data Model

‘Spot Flow’ Data (Hourly Polls)
- Rates, Daily Volume, Casing, Tubing, Static, Temp, Flow Times, etc.

Trend Data (one minute averages):
- Gas Rate, Differential Pressure, Static Pressure and Temperature
- Casing Pressure, Tubing Pressure

Data Retention:
- 1 Month at Full Resolution on Polling Server
- ‘Thin’ to daily min/max/average and statistically significant data after 30 days
- 1 Year of thinned/hourly/daily data online (Field and Corporate the same)
- 2 Years of Environmental Data
- 7 Years of Volume/Event Data
New Business Processes

- New Business Processes for Automation Deployment, Configuration and Implementation put in place for BBC and Vendors.
- SharePoint Portal designed and implemented to support Basin Automation Workflows, Documentation and CygNet Project.
Business Results

- Improved Production due to:
 - Easier/Faster access to SCADA, including mobile access
 - Improved data visibility (trend data/trend displays, analytical displays)
 - Focus on wells that need attention (well goals)
 - Better system reliability and speed
 - Improved data integrity and polling performance

- Improved Decision Making Capabilities for Management – more timely data interfaces with Production Accounting and Reserves Systems

- Faster and Cheaper Field Installations

- Fewer configuration errors
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.