MagLift - A gas well dewatering pump for 2⅜ inch production tubing

Iain Maclean
ZiLift Ltd
magLift **Linear permanent magnet motor driven rod-pump**

- Unique linear PMM technology
- Economically produce deep, low-rate gas wells;
- Increase ultimate recovery and reserves by de-watering deeper mature wells;
- Rig-less solution – deployed and powered via wireline through tubing;
- Capacity: 100 BPD from 10,000ft through 2\(\frac{3}{8}\)” tubing;
- Integrated downhole monitoring
- An ideal choice for an improved environmental footprint
MagLift system

Low installation costs
- Wireline deployed through tubing
 2½” OD tubing is predominant
- Downhole assembly 1.8” OD max

Fully deplete reservoir (max. design depth 3,000m)
- Hydrostatic pressure up to 5,000psi
- Lift rate up to 100bbl/day
- Reservoir temp. up to 120°C

Reduced power consumption
- Permanent Magnet Motor

Low maintenance
- 2 years plus operational life without intervention
System components

<table>
<thead>
<tr>
<th>Surface equipment</th>
<th>▪ VSD, transformer and filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellhead Interface</td>
<td>▪ Cable Hanger</td>
</tr>
<tr>
<td></td>
<td>▪ Cable penetrator and cable connector</td>
</tr>
<tr>
<td>Downhole Wire Line Cable</td>
<td>▪ Armoured cable with power lines and monitoring communication</td>
</tr>
<tr>
<td>Cable Connectors</td>
<td>▪ Compact dimensions, electrical and strength requirements</td>
</tr>
<tr>
<td>Monitoring</td>
<td>▪ Custom designed and built PCBs</td>
</tr>
<tr>
<td></td>
<td>▪ High temperature components</td>
</tr>
<tr>
<td>Positioning Electronics</td>
<td>▪ Position sensor</td>
</tr>
<tr>
<td>Pressure Compensation</td>
<td>▪ Pressure / volume compensation piston</td>
</tr>
<tr>
<td></td>
<td>▪ Dynamic rod seals.</td>
</tr>
<tr>
<td>Motor</td>
<td>▪ Linear permanent magnet motor.</td>
</tr>
<tr>
<td>Pump</td>
<td>▪ 1.8” OD rod pump</td>
</tr>
</tbody>
</table>
Downhole assembly

- Proven rod pumping technology driven by a new downhole linear permanent magnet motor

- 1.8" O.D. 49ft (15metres) total length (depending on pumping duty)
Linear motor

- Multiple stator modules matched to power for the required depth
- Oil filled motor is pressure balanced with the well fluid to compensate for thermal expansion

Downhole Linear motor & magnetic rod actuator
Linear Pump

- Pump shaft connected directly to linear motor rod
- Fluid is delivered into $2\frac{3}{8}$ ” tubing
- Pump stings into seal assembly
Downhole monitoring

- Pump inlet pressure
- Pump outlet pressure
- Temperature
- Motor winding temperature
- Vibration
- Motor control parameters
Testing - Linear motor

- Motor performance and control
- Position sensor development

Load profile representing pump force
Scaled to 2750m (9000ft) depth
Continuous running 21 days x 24hrs

Monitoring
- Motor force
- Temp rise

- Motor design confirmed (Jan 2011)
Testing - Seals

Seals Test Rig
• Dynamic Seals
• Pressure compensation seals
6 million cycles achieved

• Seal design confirmed (Nov 2011)
Testing – Flow loop system

- Full System Horizontal Test Rig
- Secure test facility
- Linear motor and pump performance
- Full drive system
- Full pressure and flow capability
- Elevated temperature
- Extended durability proving
- FAT of field systems

- Qualification of system in progress (Feb 2012)
Early stage test Results

- **1.5m motor module**
- **Achieved to date**
 - 30 BPD
 - Approx. 4000 ft lift
 - Ambient temp 40 °C
- **Plan**
 - Increase pump rate
 - Increase ambient temp

Extrapolating:

<table>
<thead>
<tr>
<th>Motor length</th>
<th>Depth @ 30 BPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5m</td>
<td>4,000 ft</td>
</tr>
<tr>
<td>3m</td>
<td>8,000 ft</td>
</tr>
<tr>
<td>4.5m</td>
<td>12,000 ft</td>
</tr>
<tr>
<td>6m</td>
<td>16,000 ft</td>
</tr>
</tbody>
</table>
magLift
Downhole permanent magnet linear motor rod-pump

- Economically produce deep, low-rate gas wells
- Increase ultimate recovery and reserves by de-watering deeper mature wells
- Retrofit through $2^{3/8}$” production tubing
- Rig-less solution – deployed and powered via wireline
- Proven pump technology
- Capacity: 100 BPD from 10,000ft
- Efficient power delivery from an innovative permanent magnet linear motor
- Low profile equipment footprint

- First field trials 2012
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.