Two Short Topics

1) Using Compressors More Effectively

2) Improving Upon Poor-Boy Gas-Lift

Jim Hacksma – Consultant
1) Using Compressors More Effectively
Loaded Wells & Compressors Don’t Work Together Very Well

- When Working With Compressors & Loaded Wells, There Has Been **Only One Thought**:
 - Create Lower Lower Lower Lower FTP ➤ But, Has Not Always Worked
 - Often Well Remains Below Critical ➤ Should Not Be Surprising
 - Some Wells Will Not Unload Even To Atmosphere (zero psi)
 - Then, **Why Would Those Same Wells Unload With A Compressor?**

- What Happens With Compressors & Loaded Wells?
 - Production From Loaded Well Is **Erratic** ➤ Sometimes **Almost Zero**
 - Compressor **Often Quits** ➤ Starved For Gas ➤ Low Suction Pressure
 - Excessive Compressor **Downtime** ➤ **Poor Production**

- **What Can Be Done?** ➤ Lets Look At **One Example**
LOADED WELL & COMPRESSOR

- MCFD
- CP
- FTP

On Compression
- Erratic Rate & Pressures
- Excessive Downtime

Compressor can draw down FTP & Ps to 120. But, well is below critical, is erratic, often near zero, compressor often quits. Thus, typical FTP = 500-1100 & CP = 800-1500.

Well Is Already On Compression.

What Further Can Be Done To Increase Production?
"SAME" COMPRESSOR - DIFFERENT RESULT

On Compression
- Erratic Rate & Pressures
- Excessive Downtime

Same Compressor w/ INJ
- No Longer Erratic
- Reduced Pressures
- Increased Gas Sales

Compressor can draw down FTP & Ps to 120. But, well is below critical, is erratic, often near zero, compressor often quits. Thus, typical FTP = 500-1100 & CP = 800-1500.

Instead, chose to operate with FTP & Ps = 300 & inject some gas down casing. Now little down-time. Now FTP = 300 & CP = 550 + production increased.
An Example Why: Lowest FTP Not Always Best

- Lower FTP
- No Injection
- Below Critical
- Heavy Gradient
- High FBHP
- Poor Production

- Higher FTP
- With Injection
- Above Critical
- Lighter Gradient
- Lower FBHP
- GREATER PRODUCTION
Formation Gas = Sales Gas

Injected Gas

- Formation + Injection = High Velocity In Tbg
- Above Critical ➤ No Longer Erratic
- Ample Gas To Compressor Suction
- Compressor No Longer Quits
- Increases Production
To Succeed, **Must** Follow Procedure

When Starting for the Very First Time

1. **SI** ► **Build Pressure** ► **Force Liquid Back Into Formation** ► **Create Dry Wellbore**
 - **Works In “Most” Gas Wells** ► **Not Intended For Oil Wells**

2. **Start Moving Gas Thru Wellbore While ** **Still Shut-In**
 - Create Critical Rate With Compressor Only
 - High SITP = High Critical Rate
 - But, High Ps Allows Compressor To Move Needed Rate

3. **Start Sales** ► **Slowly Increase Sales**
What Is Done?

- **Use Same Compressor ► Use It Differently**
 - Increase Compressor Capacity ► **Capacity Is Not Fixed**
 - Higher Ps & Lower Compression Ratio
 - Cripple Cylinders ► Remove Valves ► 3→2 Stage or 2→1 Stage
 - **Permits Moving More Gas** (and still have adequate HP)
 - Can Be Done With “**Most**” Compressors

- **Inject “Some” Of Compressor Discharge Down Casing**
 - Enough To Remain Above Critical In Tubing

- **The Benefits**
 - Increased Tubing Flow ► Above Critical ► Liquids Carried Out
 - Lighter Gradient ► FBHP & CP Reduced ► **Increased Production**
 - Well No Longer Erratic ► **Little Compressor Downtime**
Which Is More Important? Low Pressure **OR** High Velocity?

- **Low Tubing Pressure** (no matter how low) Is Often Unable To Keep A Well Unloaded ➤ The Results Are:
 - Low Tubing Velocity ➤ Heavy Flowing Gradient ➤ High Flowing Bottom Hole Pressure ➤ *Poor Production*

- However, **High Tubing Velocity** Can Often Provide:
 - Lighter Flowing Gradient ➤ Lower Flowing Bottom Hole Pressure ➤ *Higher Producing Rates*

- Instead Of Simply Creating *Lower Lower Lower Lower Lower FTP*

- **Use Your Compressor Differently** ➤ Move Gas Thru The Wellbore & Create High Tubing Velocity
2) Improving Upon Poor-Boy Gas-Lift
Poor-Boy Gas-Lift (PBGL)

- Limitations Of PBGL
 - Can’t Lift Large Columns / Slugs Of Liquid ➤ No GL Valves
 - Need Outside Source Of Gas
 - Because Of Above Limitations, PBGL Has Only Limited Application

- What If Those Limitations Could Be Overcome, Cheaply
 - SI For Extended Time ➤ Build Pressure ➤ Force Liquid Back Into Formation ➤ Create Dry Wellbore ➤ No Liquid ➤ Only Gas
 - With No Liquid In Wellbore & Still SI, Can Easily Pull Gas From Tubing & Inject Back Into Casing ➤ Move Gas Thru SI Wellbore
 - No Need For Outside Source ➤ Ample Gas Stored In Wellbore
 - Compressor Won’t Go Down On Low Suction
 - Create Critical Rate (w/ Compressor) While Still SI ➤ Before 1st Prod
Gradient Of Flowing “Loaded” Well

1. Too Much Liquid?
2. PBGL May Not Work?
Gradient Of Same Well “After SI”

- After Shut-In
- No Liquid In Well
- No Need For GL Valves
- And, No Need For Outside Gas
 - Ample Gas Stored In Wellbore
 - Easy To Pull Gas From Tubing
 - And, Inject Gas Into Casing
 - Easy To Move Gas Thru Wellbore
Slowly Reduce Pressure & Slowly Increase Producing Rate

- Create Critical Rate
 - While Still Shut In
 - Before Producing
- Slowly Reduce Pressure
 - Slowly Increase Sales
 - Slowly Increase Liquids
- Always Above Critical
- Soon Well Is Full Open
- But, No More Loading
Formation Gas = Sales Gas

Injected Gas

- Formation + Injection = **Above Critical in Tbg**
 - Start With Dry Wellbore ➤ No Outside Gas Required
 - A **Different** Compressor Location
 - **Sole Purpose** Of Compressor Is To Move Gas Thru The Wellbore & **Create High Velocity**
 - Sales By-Pass Compressor ➤ Can’t Reduce FTP
To Succeed, **Must** Follow Procedure

When Starting for the Very First Time

1. **SI** ► **Build Pressure** ► **Force Liquid Back Into Formation** ► **Create Dry Wellbore**
 - *Works In “Most” Gas Wells* ► **Not Intended for Oil Wells**

2. **Start Moving Gas Thru Wellbore While** *Still Shut-In*
 - **Create Critical Rate With Compressor Only**
 - **High SITP = High Critical Rate**
 - **But, High Ps Allows Compressor To Move Needed Rate**

3. **Start Sales** ► **Slowly Increase Sales**
“Improved” Poor-Boy Gas-Lift (PBGL)

- **Great Things Are Possible**, Once You Create A Dry Wellbore
 - The Result Of An Extended Shut In ➤ Works In “Most” Gas Wells

- **Previous Limitations** OF PBGL **Can Now Be Overcome**
 - Liquid Columns No Longer A Problem ➤ Forced Into Formation
 - Outside Source Of Gas No Longer Needed
 - Ample Gas Stored In Wellbore
 - Without Liquid In Wellbore, It Is Easy To Move The Stored Gas
 - Move Stored Gas As Fast As One Desires (i.e.; Above Critical)
 - Begin Sales **After** Critical Rates Have Been Created w/ Compressor

- **“Improved” PBGL Can Be Used To:**
 - Unload A Well ➤ Keep It Unloaded ➤ **INCREASE PRODUCTION**

Feb. 17 - 20, 2013
2013 Gas Well Deliquification Workshop Denver, Colorado
Introducing “CGC”

Continuous Gas Circulation

(may be new to some of you)
Continuous Gas Circulation (CGC)

- "CGC" Is The Technology Behind:
 - "Using Compressors More Effectively"
 - "Improving Upon Poor-Boy Gas Lift"
- Relatively New ► I Began Developing CGC In 1996
- Great Things Are Possible Once You Create A Dry Wellbore
 - CGC Takes Advantage Of That Fact
 - 1st, Well Is Shut In ► Until Dry Wellbore Is Created
 - 2nd, Critical Rate Created w/ Compressor ► “Before” Sales Started
 - No Outside Gas Required ► No Gas-Lift Valves Required
 - ONLY "CGC" Can Simultaneously:
 ✓ Reduce FTP (conventional compression) & Control Loading (circulation)
Conclusions Regarding “CGC”

- If Creating **Lower Lower Lower Lower FTP** Is The Only Thing You Do With Compressors, You Are **Missing Opportunities**

- “Continuous Gas Circulation” Is **A Better Way**
 - Data Shown Earlier Is Convincing ➤ **Circulating Gas Works**
 - Used “Existing” Compressor Differently To Increase Capacity
 - Used Increased Capacity To Circulate Gas Thru Wellbore
 - Increased Production

- “CGC” Is **A Permanent Solution** For Liquid Loading
 - Few Other Methods Are Permanent Solutions

- Use “CGC” As An Alternative To:
 - Velocity Strings ➤ Conventional Compression ➤ Foam ➤ Pump ➤ Plunger Lift ➤ Gas-Lift ➤ Etc.
Some **BOLD** Statements

What Should You Expect From CGC?

- **CGC Often Yields Higher Gas Rates**
 - As Much, or More, Than Other Methods Of Artificial Lift
 - In Early Stages Of Loading (at higher rates), CGC Has Little Advantage
 - In Later Stages (continued decline), CGC Has **Greater** Advantage

- **Longer Life & Higher Ultimate Recovery**
 - Should **Recover More Gas** Than Other Methods
 - When Other Methods Quit, CGC Can Return Your Well To Production
 - 1\(^{st}\) Installing Another Method ➤ 2\(^{nd}\) Installing CGC ➤ Is **Expensive**
 - Installing CGC As Initial & Final Solution For Loading ➤ Is **Cheaper**
 - Shut-In Wells Can Be Good Candidates For CGC
Questions?

Jim Hacksma – Consultant
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.