A New Approach to The Differential Valve

- Steve Long – Weatherford Gas Lift PLM
Introduction – Background Information

- First differential valves used widely in 1930’s & 40’s
- 1944 King Injection Pressure Operated Valve (IPO)
- New differential valve designs - 1990’s & 2000’s
- 2012 Weatherford development for Shell HPHT
- 2014 Weatherford New 1.5” Differential Valve
- 2016 Weatherford RH-2 XHP IPO Valve (5000 psi)
Why Bother with Differential Valves?

- Can operate at varying injection gas pressures
- No Bellows
- Not temperature sensitive
- Good flow characteristics
- Simplicity in design and handling
New Weatherford 1.5” Differential Valve

- Complete redesign similar to a velocity type safety valve
- Positive results from flow testing
- Closes on predetermined differential pressure
- Reopens at lower differential pressure than original closing differential
- Considerations
 - Specific unloading and kick-off procedures
 - Surveillance and planning
New 1.5” Differential Valve Flow Path
New 1.5” Differential Valve

- Flow Through Latch
- Check Valve
- Spring
- Choke
- Flow Tube
- Inlet Ports
- Sealing Head

Patent Pending
New 1.5” Differential Valve Mechanics – Open Position

Differential Closing Pressure = \[\frac{\text{Spring Force}}{\text{ID Area of flow-tube} - \text{ID area of choke}}\] \[\times \text{Friction Factor}\]

Where:

\[\text{Differential Closing Pressure} = \text{Casing Pressure} - \text{Tubing Pressure}\]
New 1.5” Differential Valve Mechanics – Closed Position

Differential Reopening Pressure = \[
\text{Spring Force} \div \text{ID Area of flow-tube}
\]

Where:

Differential Reopening Pressure = Casing Pressure – *Tubing Pressure

Note: If check is spring loaded check valve and the sealing head with a positive seal is used, then trapped pressure inside the flow-tube instead of tubing pressure applies.
Weatherford Gas Lift Valve Test Skid at R&D Lab
New 1.5” Differential Valve – Test #57 Close

- .313” Choke
- ~1520 upstream/casing
- Closed at 680 psi downstream
- 840 psi differential closing pressure
- 2.9 MMSCF/Day at close

May 16 - 20, 2016
New 1.5” Differential Valve – Test #57 Reopen

- Patent Pending
- .313” Choke
- 450 psi Reopen
Example Well Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubing Size</td>
<td>5.5”</td>
</tr>
<tr>
<td>Mid Perforations</td>
<td>10,000’</td>
</tr>
<tr>
<td>Static BHP</td>
<td>5000 psi</td>
</tr>
<tr>
<td>Completion Fluid Gradient</td>
<td>.500 psi/ft</td>
</tr>
<tr>
<td>Productivity Index</td>
<td>5</td>
</tr>
<tr>
<td>Water Cut</td>
<td>50%</td>
</tr>
<tr>
<td>Water Specific Gravity</td>
<td>1.07</td>
</tr>
<tr>
<td>Formation GOR</td>
<td>200:1</td>
</tr>
<tr>
<td>Wellhead Back Pressure</td>
<td>200 psi</td>
</tr>
<tr>
<td>Injection Pressure</td>
<td>1500 to 2000 psi</td>
</tr>
<tr>
<td>Injection Gas Specific Gravity</td>
<td>.70</td>
</tr>
<tr>
<td>Injection Gas Volume Requirement</td>
<td>3 to 5 MMSCF/Day</td>
</tr>
<tr>
<td>Production Rates**</td>
<td>*10,000 BFPD with 1500 psi injection pressure</td>
</tr>
<tr>
<td></td>
<td>*12,000 BFPD with 2000 psi injection pressure</td>
</tr>
</tbody>
</table>

May 16 - 20, 2016
Example Well Differential Valve Design

<table>
<thead>
<tr>
<th>True Vertical Depth (feet)</th>
<th>Valve Type</th>
<th>Choke Size (inches)</th>
<th>Differential Close (psi)</th>
<th>Differential Reopen (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2800’</td>
<td>Differential</td>
<td>16/64”</td>
<td>1050</td>
<td>650</td>
</tr>
<tr>
<td>4800’</td>
<td>Differential</td>
<td>20/64”</td>
<td>750</td>
<td>450</td>
</tr>
<tr>
<td>6200’</td>
<td>Differential</td>
<td>22/64”</td>
<td>750</td>
<td>400</td>
</tr>
<tr>
<td>7600’</td>
<td>Differential</td>
<td>24/64”</td>
<td>750</td>
<td>400</td>
</tr>
<tr>
<td>9000’</td>
<td>Orifice</td>
<td>24/64”</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

The above spacing is based on minimum of 1500 psi injection pressure and maximum 2000 psi
Stage 1 – New 1.5” Differential Gas Lift Valve Unloading

- Well is loaded with completion fluid.
- All differential valves are open
- The orifice valve remains open at all times
Stage 2 – New 1.5” Differential Gas Lift Valve Unloading

- **Injection gas** is started to unload well
- **Differential valves** open

May 16 - 20, 2016
Stage 3 – New 1.5” Differential Gas Lift Valve Unloading

- Injection gas enters top differential valve at 2800’
Stage 4 – New 1.5” Differential Gas Lift Valve Unloading

- Fluid level in casing continues to drop as gas is injected in top differential valve at 2800’
Stage 5 – New 1.5” Differential Gas Lift Valve Unloading

- Injection gas enters 2^{nd} differential valve at 4800’
- Top and 2^{nd} differential valves will be injecting gas simultaneously
- Sufficient injection gas volume will have to be maintained

1500 psi

- 2800’
- 4800’
- 6200’
- 7600’
- 9000’

Open
Open
Open
Open
Always Open

1050 \Delta P close
750 \Delta P close

© 2006 Weatherford. All rights reserved.
May 16 - 20, 2016
Stage 6 – New 1.5” Differential Gas Lift Valve Unloading

• Differential valve at 2800’ closes

• Injection point is at 4800’ as unloading continues
Stage 7 – New 1.5” Differential Gas Lift Valve Unloading

- Injection gas enters 3rd differential valve at 6200’
- 2nd and the 3rd differential valves will be injecting gas simultaneously
- Sufficient injection gas volume will have to be maintained
Stage 8 – New 1.5” Differential Gas Lift Valve Unloading

- The differential valve at 4800’ closes
- The injection point stabilizes at 6200’
- Production rate of ~10,000 BFPD
Stage 9 – Unloading Complete for 2000 psi Injection Pressure

- The differential valve at 7600’ closes
- Injection point stabilizes at 9000’
- Production rate is ~12,000 BFPD
Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.