FIBRE OPTIC BASED GAS LIFT SURVEILLANCE USING

DISTRIBUTED TEMPERATURE SENSING & DISTRIBUTED ACOUSTIC SENSING

39TH GAS-LIFT WORKSHOP
HOUSTON, TEXAS, USA
MAY 16 – 20, 2016

Gijs Hemink — Shell Global Solutions International B.V., Rijswijk, The Netherlands
Research Petrophysicist
Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Shales: Our use of the term ‘shales’ refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this document refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2015 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 18th of May 2016. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
Requirements for fibre optic based gas lift surveillance

- An optical fibre on the production tubing across the gas lift mandrels
- A DTS or DAS system located close, but away from the well head

Content of presentation

✓ (basic) Understanding the temperatures and acoustics in the well and how these relate to gas lift

✓ Examples from field data
1.0 IMPROVED INTERPRETATION METHODOLOGY
There are three thermal phenomena related to lift gas injection

1) Decompression of the lift gas (Joule-Thompson cooling) when injected through a port into the production tubing

2) The thermal conductivity differences of the annular fluids (liquid interface)

3) The velocity of the lift gas in the annulus (impacted by the gas mass rate and annular volume) and its interaction with the flowing production fluid
1) The DTS FO system measures a combination of the *Tubing Temperature* (T_T) as well as a *Annular Fluid Temperature* (T_A).
1) The DTS FO system measures a combination of the **Tubing Temperature** \((T_T) \) as well as a **Annular Fluid Temperature** \((T_A) \).

2) The measured **Temperature** depends on the fluid fill and flowing velocity of this fluid.

Diagram Notes:**

- **Casing**
- **Annulus**
- **Tubing**

Cable is clamped on tubing

Oil/Gas:

- \(T_A = T_T \) \((Q,v) \) (d\(T\) by heat exchanger)

Oil/Brine:

- \(T_A \approx T_T \) (d\(T\) ~ thermal conductivity)

Gas lift:

- \(T_A \neq T_T \) (d\(T\) ~ thermal conductivity)
1) The DTS FO system measures a combination of the **Tubing Temperature** \((T_T)\) as well as a **Annular Fluid Temperature** \((T_A)\).

2) The measured **Temperature** depends on the fluid fill and flowing velocity of this fluid.
What do we expect to measured

- Strong broadband frequency signal
- The trick is to understand how to ‘filter-out’ the contributions of other acoustic sources
Example of isolating the gas lift signature contained in the DAS measurement
2.0
EXAMPLES OF DTS AND DAS USED TO ASSESS GAS LIFT INJECTION STATUS
Injection of lift gas is indicated at the depth of the orifice valve as,

- **[DAS]** Shows strong acoustic signal at Orifice valve
- **[DTS]** Shows strong temperature cooling effect at orifice depth
- **[DTS]** Width of DTS trace indicates annular liquid level below Orifice valve
CASE II: CHANGING GAS INJECTION RATE

DAS data was acquired while the gas injection rate was set ON/OFF

- [DAS] There is a clear signal at the depth of the orifice valve (± 20min)
- DTS is unable to capture this changes (1 trace every 3 hrs)
CASE III: INJECTION DEPTH SHALLOWER THAN EXPECTED

[DAS] There is no signal observed at the orifice valve as was expected

[DTS] Shows temperature drop and change in trace width @ SPM #4 indicating the lifting point (no DAS data available at this depth) and annular liquid level
CASE IV: DTS & DAS IN WELL WITH PPO VALVES

Observations:

- **[DAS/DAS]** Gas injection at SPM 2
- **[DTS]** Liquid level in between SPM 3 and 4 (unloading unsuccessful?)
3.0
CONCLUSIONS
CONCLUSIONS

- Various field cases have demonstrated that both DTS & DAS data can be used for the surveillance of the gas lift status when using the presented improved interpretation methodology.

- DTS data can be used to identify the depth of (steady-state) gas injection and can be used to distinguish between flowing gas, stagnant gas and a liquid in the annulus.

- DAS data can be used to identify the depth of gas injection, even when valves are chattering. It is therefore more suited than DTS to monitor non-steady state situations as for example a regular start up of the well.

- There should be enough temperature contrast and acoustic signal for the technologies to work (depending on: T signal @ valves, Q_{prod}, $Q_{gas-inj-rate}$, orifice size, and ΔP across valves).
Project carried out as part of Shell’s In-Well Technology Fibre Optic Surveillance program

A special thank you goes out to Murat Kerem and Hans de Jongh for their contributions to this project

We are very grateful for the support of the assets involved in the work presented