Automating Gas-Lift Injection Rates

Darren Doige
Oil and Gas,
Industry Solutions

39th Gas-Lift Workshop
Houston, Texas, USA
May 16 – 20, 2016
Agenda

• Traditional Method of Optimization
• Gas Lift Challenges
• Single Well Optimization
• Constraints & Disruptions
• Multi Well Optimization
• Dynamic Lift Optimizer
• Case Study / Typical Business Results
• Conclusion
Traditional Solution

- Manual operations
- Lack of insight into well production
- Optimization is trial and error
- Difficult to respond to changes
- Slow, open loop
- Operating in a dynamic environment
Challenges with Manual Operations

- Inability to make real-time adjustments to gas lift rates in response to well variability
- Inability to effectively distribute lift gas to the most profitable wells
- Inability to meet my production targets

“
I’m not maximizing production with the most economical use of my lift resources
”
Optimize Single Well

- Oil production is a non-linear function of gas rate.

- At low rates, oil production increases with gas lift rate.

- At high rates, oil production decreases because of the increase of back pressure in the flow system.

- Determine gas rate required to maximize production.
System Constraints & Disruptions

- **Constraints**
 - Availability of compressed gas
 - Separation Capacity
 - Water disposal
 - Production minimums

- **Disruptions**
 - Equipment outages
 - Well slugging
 - Well workovers & shut-ins

How much should I produce from each well if I cannot maximize them all?
Solution: Optimize the Platform

- Optimal gas distribution

Graph showing production rate vs. gas injection rate for Well #1, Well #2, Well #3, and Well #4, with a total platform curve.
Key Process Enablers

- Measurement of well production
- Insight into facility constraints
- Regulation of lift gas
- Optimizer
Dynamic Lift Optimizer

- Online, real-time, closed loop optimization engine
- Gathers real time data from the field
- Tests the various combinations of lift gas rates against operating constraints and converges on an optimum
- Sends new lift gas rates to the automation system either as an advisory or as a new set point
- Makes the most of available gas and allocates gas to wells where it is most profitable
DLO Software Architecture

- OSI PI Historian
- PI AF
- DLO Engine
- Optimizer (Lingo)
- Customer DCS/SCADA
- Real-time Dashboard (HTML)
- Well Curve Fitting Tool

Processes:
- Process Data
- Well Test Data
- Hierarchy
- Site Structure
- Well Status
- Limits
- Prices
- Well Curves

Inputs:
- Field Instruments
- Operator Inputs

Models:
- Well Performance Models (e.g. Prosper)
Optimizer Hardware Architecture

- **Historian Server**
- **Operator Consoles**
- **Local Control Network**
- **Control System**
- **Corporate Network**
- **Optimizer Dashboard (Web-based)**
- **Historian Interface & Optimizer Engine**
- **DLO Engineering Station Curve Fit Tool**

Optimizer Consoles

Corporate Network

History Interface & Optimizer Engine
Dynamic Lift Optimization Cycle

Stop/Start
- Read inputs
- Pre-process data

Opportunity
- Write results
- Deviation checks

Optimization
- Base cases

Deviation checks
- Pre-process data

Base cases
- Validate / Filter

Where should we be operating?

Do we still believe the well models?

Where are we now? What ‘space’ do we have?

What do the constraints cost?

From Historian (PI) Database

To Historian Database
Automation Best Practice…

- Automate well testing to maximize well performance insight
- Optimize gas lift injection flow rates to each well automatically
- Respond to process constraints automatically
- Prioritize gas lift supply to the wells with the highest profitability
- Provide real-time analytical insight into process
Customer Result

Installed on approximately 200 wells covering several projects

- Achieved an average of over 10% production increase when decline considered
- $15 million annual impact from case study
Conclusions

- Online Optimization offers extremely beneficial business impacts
 - Achieved base improvements and reduced the decline trajectory
- Getting the well test data needed to performance match the well models is crucial
- Having a local champion, someone on the ground, to continuously work with operations to get the things needed is crucial
- Reliable measurements for lift gas rates and well tests are required (does not mean no variation – means no systematic problems)
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.