Edge-Welded Metal Bellows

- Pat Reed – New Product Development Manager
- Senior Aerospace Metal Bellows
What is an edge-welded metal bellows?
Edge-Welded Metal Bellows Terminology

<table>
<thead>
<tr>
<th>Material Thickness (inch)</th>
<th>Weld Bead Diameter (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.005</td>
<td>.012 - .017</td>
</tr>
<tr>
<td>.007</td>
<td>.017 - .024</td>
</tr>
<tr>
<td>.010</td>
<td>.024 - .034</td>
</tr>
<tr>
<td>.015</td>
<td>.036 - .051</td>
</tr>
</tbody>
</table>

Weld Bead Size vs. Material Thickness

Weld

Pitch

Active Span

Span

CL
Effective Area

The area that pressure acts upon to produce a force output

- Similar to the piston in a air cylinder
- Force (lbs) = Pressure (psi) x Area (sq.in.)

\[
A_E = \frac{(OD + ID)^2 \pi}{16} = \frac{(2+1.4)^2 \pi}{16} = 2.27
\]
Convolution Spring Rate (Kc) (lb./in/convolution)

\[K_c = \frac{10.3 \times 10^6 t^2}{S} \]

Capsule Spring Rate (K) (lb/in)

\[K = \frac{K_c}{N} \]

t = Diaphragm Thickness
S = Span
N = Number of Convolutions
Spring Rate

Convolution Spring Rate (Kc) (lb./in/convolution)

- Thickness = .002"
- Span = (OD - ID)/2
 Span = (2 - 1.4)/2 = 0.3"

\[K_c = \frac{10.3 \times 10^6 \times (0.002)^2}{0.3} = 137 \]

Capsule Spring Rate (K) (lb/in)

- Convolution K-rate = 137
- Number of Convolutions = 56

\[K = \frac{137}{56} = 2.4 \]
Force/Pressure Balance

\[\Delta P \cdot A_E = k \cdot \Delta L \]

- \(\Delta P \) = differential pressure (psid)
- \(A_E \) = effective area (in\(^2\))
- \(K \) = spring rate (lb/in)
- \(\Delta L \) = change in length (in)

Example:

\(\Delta P = 1 \text{ psid} \)
\(A_E = 2.27 \text{ in}^2 \)
\(K = 2.4 \text{ lb/in} \)

\[\Delta L = \frac{(1 \text{ psid})(2.27 \text{ in}^2)}{2.4 \text{ lb/in}} = 0.946 \text{ in} \]
Edge-Welded versus Formed

Stroke

- Edge-welded bellows can be compressed up to 90% and extended up to 30%
- Formed bellows are limited to about 10%

Flexibility

- Edge-welded bellows are relatively soft in the axial, angular, and radial directions

Cost

- In general, edge-welded bellows are more expensive due to the extensive welding
Materials of Construction

Heat Treatable:
- AM-350 Stainless Steel
- Inconel 718
- Haynes 242

Non-Heat Treatable:
- 300 Series Stainless Steels
- Inconel 625
- Titanium
- Hastelloy C276

Mate bellows with compatible fittings including Incoloy® 945/945X
Methods of Manufacture

Micro-welding
- GTAW (TIG)
- Laser
- Electron Beam

Cleaning
- Aqueous
- Electropolish
- Pickle
Sizes and Thicknesses

Outside Diameters

- < 0.125"
- Up to 6 feet

Thickness

- 0.001" - .050"

3 feet? | 4 feet? | 5 feet or more?
Types of Edge-Welded Bellows

Nesting Ripple Bellows

- Long Stroke Capability
- Compact Nested Length
- Good Linearity
- Moderate Pressure Capability
Types of Edge-Welded Bellows

Single Sweep Bellows

- Good Pressure Capability
- Good Stroke Capability
- Compact Nested Length
- Good Linearity
Types of Edge-Welded Bellows

HIPRES® Bellows

- Withstands tremendous pressure in the nested position

Conventional Bellows

HIPRES® Bellows
Types of Edge-Welded Bellows

HIFORCE Bellows
- Transmits tremendous force in the nested position
- Excellent for holding and locking

Other Bellows Configurations
- Coned OD & ID, flat plate, crescent, torus, multi-ply bellows
Design Considerations

- Fatigue Life
- Stroke
- Pressure
- Cost
Extreme Temperatures

- Temperatures up to 1400°F (760°C) and higher
 - Flexible exhaust ducts
 - Thermal switches
 - Thermal valves
 - Thermal actuators
 - Firewall penetrations
Extreme Pressures

- Pressures up to **25,000 psi**
 - Gas-lift valves
 - Pressure/temperature compensators (e.g. for ESP’s)
 - Pressure switches
 - Sub-sea junction boxes
 - Accumulators (e.g. for aircraft hydraulic systems)
Reliability/Zero Maintenance

- 1,000,000,000 cycle bellows
- Gas-lift valves to 13,000 psi
- Medical implants
- Maintenance free accumulators
 - Fully welded and hermetically sealed for life
 - Space shuttle and space station applications
Leakage

- Helium mass spectrometer leak tight up to 1×10^{-10} scc/sec helium (1 cc in 320 years)
- Elastomeric seal replacements
 - Dynamic seals in the desert
Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.