Foam Assisted Gas Lift

- Ahmed Farag, Jim Hall
- Production Technologist
- Nederlandse Aardolie Maatschappij B.V.
a company within Shell Upstream International
DEFINITIONS AND CAUTIONARY NOTE

Reserves: Our use of the term "reserves" in this presentation means SEC proved oil and gas reserves.
Resources: Our use of the term "resources" in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.
Organic: Our use of the term "organic" includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.
Resources plays: Our use of the term "resources plays" refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document "Shell", "Shell group" and "Royal Dutch Shell" are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. "Subsidiaries", "Shell subsidiaries" and "Shell companies" as used in this document refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as "joint ventures" and companies over which Shell has significant influence but neither control nor joint control are referred to as "associates". The term "Shell interest" is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management's current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management's expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as "anticipate", "believe", "could", "estimate", "expect", "intend", "may", "plan", "objectives", "outlook", "probably", "project", "will", "seek", "target", "risks", "spend", "should" and similar terms and phrases.

There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell's products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell's 20-F for the year ended 31 December, 2014 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 18-05-2016. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
Executive summary

- Trial Time: 8 days
- Total spent: ~ USD $300,000
- Net Oil gain: 60-65 m³/d
- Optimum concentration of foam: 800 ppm
- Possible savings: *10,000 m³/d of gas lift
- Applicable base: gas lifted oil wells with high water cut (tested at 70%)
- No process upsets
Global projects R&D – Test Foaming in Oil Wells

- America – proposal stage
- Brunei – execution phase
- Rotterdam field was chosen to test the concept of foam lift in oil operated wells

- RTD-4 picked because:
 - high water cut (~70%)
 - outflow is constrained due to the gas lift arrangement
 - max deviation only 55 deg, allows for cap string installation
Success criteria

• Production Criteria
 • Noticeable increase in oil production and/or less sluggish flow behaviour
 • Production rate is the same at a 50% lower gas lift rate with foam application.

• Facilities Criteria
 • No process upsets to topsides, including the formation of emulsions.
 • Ensure export oil quality meets spec:
 • <1% water
 • <75 g/m3 salt content
 • Ensure water disposal and injection meets spec:
 • <25 ppm TSS
 • <250 ppm oil in water concentration
Well Diagram & Target depth

1/4" Capillary

3 1/2' Tubing

9 5/8" Casing

Upper KNGLG
Perforations:
1672-1697m

Lower KNGLG
Perforations:
1703-1765m

X
1711 m + DHG

Tubing Punch:
1695m
Year - 2002

Tubing Punch:
1723m
Year - 2015

7" Liner

Capillary string for foam injection

Orifice (GL Injection)
690m TVD

Perforations
1280-1318 mTVD

Foam injection, 1280m TVD

Plug
Capillary installation set-up
Production data

Pre-cap string installation

Post-cap string installation
- Water/glycol injection
- No foam injection
Baseline data

Cycle: 1 hour high production
- Average Gross: 215 m3/d
- Water: 175 m3/d
- Oil: 40 m3/d

Cycle: 2 hours low production
- Average Gross: 85 m3/d
- Water: 50 m3/d
- Oil: 35 m3/d

Feb. 4 – 8, 2013

2013 Gas-Lift Workshop
Start of foam injection

Observations:

- Longer stable production at higher rates compared to baseline data at the same gas lift injection rate.
- (Average gross rate increased from 155m³/day to 305m³/day)
- (Average oil rate increased from 40m³/day to 90m³/day)
- Observations for LAB: No breach in oil/water specs. No foam seen on samples on surface so far
Increasing foam concentration

<table>
<thead>
<tr>
<th>Step</th>
<th>No foam</th>
<th>1 (1.5 kg/hr)</th>
<th>2 (2 kg/hr)</th>
<th>3 (4 kg/hr)</th>
<th>4 (6 kg/hr)</th>
<th>5 (8 kg/hr)</th>
<th>6 (10 kg/hr)</th>
<th>7 (11 kg/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foam (ppm)</td>
<td>0</td>
<td>110</td>
<td>160</td>
<td>285</td>
<td>430</td>
<td>560</td>
<td>690</td>
<td>760</td>
</tr>
<tr>
<td>Gross (m3/d)</td>
<td>160</td>
<td>307</td>
<td>290</td>
<td>320</td>
<td>320</td>
<td>325</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>Water (m3/d)</td>
<td>120</td>
<td>217</td>
<td>207</td>
<td>230</td>
<td>230</td>
<td>235</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Oil (m3/d)</td>
<td>40</td>
<td>90</td>
<td>83</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>
Foam Injection rate increased to 16kg/hr (1140 ppm)

Oil in Water above limit of 250 mg/L
Step 7: 11 kg/hr
Foam Concentration: 800 ppm
Phase 2: Decreasing gas lift injection rate
Phase 2: Decreasing gas lift injection rate

<table>
<thead>
<tr>
<th>Step</th>
<th>GL rate (m3/d)</th>
<th>Gross (m3/d)</th>
<th>Water (m3/d)</th>
<th>Oil (m3/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14,000</td>
<td>315</td>
<td>230</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>11,000</td>
<td>290</td>
<td>215</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>10,000</td>
<td>280</td>
<td>210</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>9,000</td>
<td>270</td>
<td>200</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>8,000</td>
<td>255</td>
<td>190</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>7,000</td>
<td>225</td>
<td>165</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>6,000</td>
<td>195</td>
<td>145</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>5,000</td>
<td>160</td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>4,000</td>
<td>120</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>3,000</td>
<td>75</td>
<td>55</td>
<td>20</td>
</tr>
</tbody>
</table>

By using foam rate of 4 kg/hr and only 4,000 m3/d, the same production rates can be achieved when the well was on production with 14,000 m3/d gas lift and no foam.
Overview of production

RTD-4 Foam Trial
(Sampled Data)
Re-test; production data

Significant change in production with the addition of foam

Feb. 4 – 8, 2013

2013 Gas-Lift Workshop

17
Executive summary

- Trial Time: 8 days
- Total spent: ~ USD $300,000
- Net Oil gain: 60-65 m³/d
- Optimum concentration of foam: 800 ppm
- Possible savings: *10,000 m³/d of gas lift
- Applicable base: gas lifted oil wells with high water cut (tested at 70%)
- No process upsets
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.