Niobrara, Horizontal Well Deliquifcation via Plunger Lift and Enhanced Controls Compression

Arthur Beecherl, Verdad Oil & Gas Corporation
Aaron Baker and Jason Fortner, Flogistix, LP
Principles of Operation

- Stabilize production by utilizing compression in conjunction with plunger lift
- Reduce required lifting force by artificially controlling flowing static pressure
- Decrease casing and tubing pressure differential
- Increase plunger cycle frequency
Well and Artificial Lift Profile

- Well Type: Horizontal
- Producing Formation: Niobrara
- Location: Lochbuie, Colorado
- Total Vertical Depth: 7,240’ (horizontal leg
- Lateral Length: 4,200’
- Collar Placement: +/- 40 degrees (~7,100’ MD)
- Plunger Type: 18”, 4 Slot Caged Bypass
- Compressor Type: 108mm Rotary Screw
- Compressor Driver: GM 5.7L Natural Gas Engine
Performance Without Compression

- Extended shut-in periods for building pressure
- Plunger non-arrivals due to excessive liquid loading
- Periodic swabbing to unload liquids
- Inconsistent production, requiring additional monitoring and intervention
Well Cycle Prior to Compression

• Average Casing Pressure: 467 PSI
• Average Tubing Pressure: 229 PSI
• Average Static Pressure: 134 PSI
• Average Plunger Arrival Time: 20.2 Minutes
• Tubing – Line Pressure Override: 195
• Average Afterflow: 4.12 Minutes
• Average Plunger Velocity: 248 Ft/Min
• Plunger Cycles Per Day: 33.75
Trend Prior to Compression

- Erratic production
- Substantial differential pressure between casing and tubing
- Frequent down time due to liquid loading
Performance With Compression

- 93% increase in plunger cycles per day
- Critical velocity maintained across all cycles
- Consistent plunger arrivals at reduced cycle duration
- Eliminated impact of fluctuations in gathering system pressure
Well Cycle With Compression

- Average Casing Pressure: 323 PSI
- Average Tubing Pressure: 178 PSI
- Average Static Pressure: 95 PSI
- Average Plunger Arrival Time: 14.6 Minutes
- Tubing – Line Pressure Override: 200
- Average Afterflow: .74 Minutes
- Average Plunger Velocity: 549 Ft/Min
- Plunger Cycles Per Day: 65
Trend Summary

- Stabilized production
- Reduced casing and tubing pressure differential
- No downtime associated with liquid loading
Production Impact

- Upward shift in decline curve
- Decline rate and daily average stabilized
- Compression costs offset by reduction in swab costs
- Improved labor efficiency
24 Hour View Without Compression

- Approx. 30 cycles per day
- Avg plunger arrival of 20 minutes
- Avg Static Pressure 130 psig
- Avg differential pressure 239 psig
24 Hour View With Compression

- Approx. 65 cycles per day
- Avg plunger arrival of 14.5 minutes
- Avg Static pressure 95 psig
- Avg differential pressure 145 psig
Performance Tables

Averaged Comparison of Trend Data Points (September 8th to December 31st)

<table>
<thead>
<tr>
<th></th>
<th>Flow Rate (MCFPD)</th>
<th>Casing (PSI)</th>
<th>Tubing (PSI)</th>
<th>Static (PSI)</th>
<th>Arrival Time (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to Compression</td>
<td>221.13</td>
<td>467.12</td>
<td>228.68</td>
<td>133.74</td>
<td>20.20</td>
</tr>
<tr>
<td>With Compression</td>
<td>244.68</td>
<td>323.11</td>
<td>178.16</td>
<td>94.97</td>
<td>14.66</td>
</tr>
<tr>
<td>Difference</td>
<td>23.55</td>
<td>144.02</td>
<td>50.52</td>
<td>38.77</td>
<td>5.54</td>
</tr>
</tbody>
</table>

2 Hour Average Comparison (September 27th vs November 11th)

<table>
<thead>
<tr>
<th></th>
<th>Tubing - Static Override</th>
<th>Tubing at Cycle Start</th>
<th>Casing - Tubing Differential</th>
<th>Static Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to Compression</td>
<td>196.00</td>
<td>330.23</td>
<td>245.04</td>
<td>135.77</td>
</tr>
<tr>
<td>With Compression</td>
<td>185.00</td>
<td>244.78</td>
<td>147.76</td>
<td>91.50</td>
</tr>
<tr>
<td>Difference</td>
<td>11.00</td>
<td>85.45</td>
<td>97.28</td>
<td>44.27</td>
</tr>
</tbody>
</table>

2 Hour Average Comparison (September 27th vs November 11th)

<table>
<thead>
<tr>
<th></th>
<th>Arrival Time (Minutes)</th>
<th>Cycles Per Day</th>
<th>Shut In Time (Minutes)</th>
<th>Plunger Velocity (Ft/Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to Compression</td>
<td>28.67</td>
<td>33.75</td>
<td>14</td>
<td>248</td>
</tr>
<tr>
<td>With Compression</td>
<td>13.00</td>
<td>65.45</td>
<td>9.00</td>
<td>546</td>
</tr>
<tr>
<td>Difference</td>
<td>15.67</td>
<td>31.70</td>
<td>5.00</td>
<td>299</td>
</tr>
</tbody>
</table>
Gathering System Pressure Spike

- Compressor telemetry data
- Midstream pressure surged from 150 psig to 300 psig
- Upstream pressure maintained throughout the period
Gathering System Pressure Spike

- Consistent plunger cycles
- No missed plunger arrivals
- Stable tubing and casing pressures

December 1st, to December 3rd, 2015

Midstream Pressure Spike
150 psig to 300 psig
Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.