Advanced Intermittent Gas Lift Utilizing a Pilot Valve

Matt Young Technical Sales Manager
Intermittent gas lift is an artificial lift method in fields where formation pressure has dropped to a level where continuous injection gas lift is no longer sustainable or very inefficient.

Or in fields with high formation pressure but very low productivity.
Pilot Valve Gas Lift-Operations

The well has a pilot valve with a standing valve at the bottom of the tubing string, unloading valves can be placed above the pilot valve to help unload after a work-over completion.

A. Injection gas is continuously injected into the casing/tubing annulus at a controlled low rate <400 mcfd.

The pilot valve is closed with formation fluid accumulating above the valve. Casing and tubing pressure at the valve depth increase until the desired slug length is accumulated, then the pilot valve opens, and injects gas below the liquid column.
B. Injection gas at high pressure (200-300 psi ΔP) enters the tubing string at an instantaneous rate, creating a large gas bubble below the liquid slug.
C. The gas bubble propels the slug upward along the tubing string to surface. Once unloaded at surface the tubing pressure bleeds down to separator pressure.

D. At this point in the cycle, the lowest FBHP is achieved due to a wet gas gradient plus wellhead pressure acting on the reservoir.
E. Once the fluid slug and gas bubble is unloaded to surface, well inflow through the now open standing valve begins and the pilot valve closes. The cycle then repeats itself.
Intermittent gas lift can be used as an alternative for positive displacement pump applications, as it is able to achieve similar FBHP.

The approximate maximum fluid rates for intermittent lift at different tubing sizes:

- 75 bfpd for 2 3/8”
- 125 bfpd for 2 7/8”
- 200 bfpd for 3.5”

Total recovered fluid is based on number of cycles per day, and how much fluid can be recovered with each cycle.
A pilot valve contains two valves in one:

A. The Pilot Section
B. The Power Section
Pilot Valve

In the closed position, both the pilot and power section are closed.

The bleed hole in the power section allows tubing pressure to act on the pilot section port.

Once the injection and tubing pressure equal the required opening force, the pilot section opens and injection pressure fills the power section area.
Pilot Valve

In the open position, the injection pressure acting on the piston area compresses the power section spring, causing the main port to open, and discharges injection gas rapidly into the tubing below the liquid slug.

The large differential (200-300 psi) across the piston, allows for the piston to snap open and injection gas instantaneously passes through the main discharge port.
While the liquid slug is traveling to surface, the injection pressure and tubing pressure is decreasing until it reaches the closing pressure of the pilot section. Once the closing injection pressure is reached, the pilot section closes. This reduces the force acting on the power section piston, and the power section closes stopping injection into the tubing. During this phase, the casing pressure begins to build until it reaches the opening pressure of the pilot section.
Huff 32 SL 08H Injection Pressure Cycles

Casing Pressure Cycles

Pressure (Psi)

Time-Hours
Casing pressure plus tubing load achieves the valve PSO. Standing valve closes, once injection enters the tubing string.

The pilot valve is open and injecting a large bubble of gas into tubing, and under fluid column. Gas velocities are high enough to carry fluid column to surface. Standing Valve still closed.

Casing Pressure Build to Valve PSO, currently the valve is closed and fluid is feeding into the tubing, standing valve is open until hydrostatic pressure from the liquid inflow equalizes with the BHP.
Huff 32 SL 08H Production – Total Production

Production Data

- Oil Prod
- Water Prod
- Gas Sales

Initial Packer/Gas Lift Installation

Work-Over Packer-less Gas Lift Installation

Pulled GL System, and Installed Pilot System

Natural Flow

Wireline Pull of Pilot Valve and Replace

Daily Gas Production - MCFD
Fluid Production - BFPD
• A Total of 33 Cycles Per Day
• Averaged production of 40 bfpd
• 1.22-1.25 bbls per cycle w/ 1-3% fluid loss
• Calculated fluid column above the pilot valve during each cycle is ~216 ft.
• Reservoir Pressure 355 psi
• Average Wellhead Pressure of 90 psig
• Standing Valve Depth = 10,750’ MD – 10,676’ TVD (50 Degrees)

Closed:
 • Total Pressure @ standing valve = 350 psi

Open:
 • Instantaneous Flowing Pressure @ standing valve = 268 psi
Lessons Learned

- Utilize Plunger Lift System to improve lift efficiency
- Include unloading gas lift valves to prevent swab runs during compressor down time
- Install orifice valve after work-over to clean well up before installing pilot valve and plunger system.
- Set packer and pilot valve as deep as feasible possible
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.