Plunger Velocity: Average vs Surface

Mark Scantlebury, President and CEO
Extreme Telematics Corp.
AVERAGE PLUNGER VELOCITY

The way it has always been done
Plunger Sensor Background

• Inductive coil sensing has been the standard
 – Ferrous metal induces current in a coil which closes a switch
 – Susceptible to noise or slow plungers which leads to incorrect detections

• Side Effects
 – One of the least expensive, but one of the most critical components
 – Leads to poor system performance
 – Many times operators compensate for poor sensors further eroding production
Calculating Average Plunger Velocity

• Most systems still rely on average plunger velocity

• Simply use the well depth and arrival time
 – \(v = \frac{d}{t} \)

• System Parameters Depend on Plunger Type and Lubricator
 – Target of 750 ft/min
 – Fast Trip > 1000 ft/min
 – Dangerous Trip > 2000 ft/min
Average Velocity Issues

- The plunger is not entering the lubricator at the velocity you think it is
- Assumes that the plunger was at bottom
- Ignores acceleration and deceleration
- Non-Optimal Operation
- Potential damage to plunger, lubricator, and spring without knowing it
MAGNETIC SENSING TECHNOLOGY

How it works and why it is better
Magnetic Sensing

• Wanted to measure surface velocity, but needed a more reliable technology first

• Magnetic field sensor with microprocessor
 – Digitally filter out noise
 – Build more complex detection algorithms
 – Adjust sensitivity
 – Upgradable software
 – Real time debugging
Magnetic Sensing

- Digital Noise Filter
 - Convert analog voltage to digital
 - Remove high frequency changes

- Detection Algorithms
 - See how signal changes with plunger arrival
 - Arrival sensor simply looks for an amplitude change
Magnetic Sensing

• Magnetic Data Capture
 – Communications interface on Cyclops streams data in real time to ETC Vision
 – Data is graphed or logged to file
 – 10s of thousands of runs captured

2016 Gas Well Deliquification Workshop
Denver, Colorado
Variance in Plunger Waveforms

- Unique signature per plunger type
- Magnetic field pushed or pulled by ferrous objects
- Some can be very simple
- Other can have multiple peaks
- Difficult for a set of rules that apply to all plunger types
DETECTING SURFACE VELOCITY

Using an instantaneous velocity sensor
• Implements ETC’s magnetic sensing technology to determine instantaneous velocity

• Interfaces
 – Dry contact switch
 – RS-485 Modbus slave

• Operation
 – Velocity measured as plunger passes
 – Switch closed once velocity is available
 – Logs all arrivals even when control system has moved on
 – Modbus port used to retrieve velocity and access settings and logs
Detecting Surface Velocity

• Method
 – Multi sensor array in the same device
 – High speed synchronous clock
 – Multi Point Correlation
 – Accurate (+/- 8%)

• Increasing Velocity
 – Slope increases
 – Peak narrows
 – Time difference between key waveform points reduces
Detecting Different Plunger Types

- Alloy brush plunger
 - Different waveform shape
 - Same principles apply
 - Each plunger type has a signature

- Dual Padded Plunger
 - Multiple Peaks
 - More complex
 - Waveforms may differ
PLUNGER VELOCITY AT SURFACE

Field trial analysis
Surface Velocity Misconceptions

• Issues
 – Historically little to no visibility of instantaneous velocity at surface
 – Assumptions made about surface velocity

• Reality
 – The plunger does not consistently travel at the average calculated velocity
 – Plunger rapidly accelerates at surface due to gas expansion, low line pressure, or loss of fluid.
 – Can also decelerate based on dampening from large slug size
 – Varies per well and each plunger run
Surface Velocity when Venting

- Average velocity relatively stable (750 ft/min).
- Surface velocity lower (475 ft/min)
- Rising surface pressure, slows plunger.
- Well is vented to rise plunger
- Average velocity reported lower on vent cycle because time increased
- Surface velocity spikes over 2000 ft/min.
Optimizing on Average Velocity

- Well optimized on plunger arrival time (average velocity)
- Surface velocity slightly lower, but still erratic per trip
- Average lowered further with no impact on surface velocity
Optimal Average Velocity?

- Operator believed system was optimal based on consistent average velocity (750 ft/min)
- Surface velocity was consistently more than 50% higher (1200 ft/min)
- Decrease in surface pressure brought more fluid into well bore
- Large slugs brought to surface reduced plunger surface velocity
Broken Plunger Investigation

- Operator reported numerous broken plungers and springs
- Average velocity was approximately 300 m/min (1000 ft/min)
- Plunger did not make it to surface in time
- Well closed and build up time added
- Next arrival was over 900 m/min (3000 ft/min)
- Some arrivals over 1700 m/min (5500 ft/min)
Conclusions

- Using times or average velocity is limiting
- Surface velocity is a key parameter that is currently missing in plunger lift operations
- Helps identify issues that are currently getting missed
- Potential to dramatically increase safety and production while reducing maintenance costs
- Gateway to new optimization methods
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.