Horizontal Well Downhole Dynamometer Data Acquisition: Update

Project sponsored by ALRDC

Chair: Victoria Pons, Ph.D.
Walter Phillips
Cleon Dunham
Norm Hein
Bill Lane
Tony Podio, Ph.D.
Lynn Rowlan

(((ECHOMETER)))

Gas Well Deliquification Workshop
Sheraton Hotel, Denver, Colorado
February 29 – March 2, 2016
Project Goal & Overview

- Gather true measured data on both deviated & horizontal rod-pumped wells
 - Actual downhole load & position (i.e. dyno cards)

- Provide that measured downhole data to industry
 - Improve our understanding of side loads, bending, friction, damping, and other factors resulting from well deviation

- Similar to the Sandia project from the mid 1990’s, but focused on deviated & horizontal wells

Paper: Insights from the Downhole Dynamometer Database - 1997
SPE Paper #37500
And a number of SWPSC Papers
Historical Perspective - Sandia

- Gathered and published data from multiple test wells
- Project took place during a period of low oil prices
- Proved wave equation methods are sound and accurate

But… This only holds for vertical wells

Number of well drilled since 1995 (Sandia)?
 - How many of those wells are straight holes?
The Problem

- We were promised this
- But are too often seeing things like this
- Why?
 - Deviations, friction, etc.
 - Everything Sandia didn’t test
But Rodstar & SROD let us design deviated wells…

Design: Start with an estimated pump card, then calculate the surface card

Analysis: Start with a measured surface card, then calculate the pump card

Design software does this “reasonably” well

Analysis software doesn’t do this for deviated wells
Design: Which is the deviated well?

- Same well, only difference is the design deviation
 - One is “deviated” the other is “vertical” – Which is which?

Ignore Peak & Minimum Loads

What can you tell about the shape of the surface cards alone?
Analysis: Which got the calculation right?

- Pump cards are good indicators of correct methods
 - An unreadable pumpcard generally means bad input
 - OR unaccounted-for dynamics in the calculations

A “legible” pumpcard usually indicates good inputs and methods

Wellbore friction and fluid dynamics are not accounted for
How Will Measuring Well Dynamics Help?

- Mathematical models need to be validated
- The frictional components in deviated wells are not thoroughly understood
 - Measured data improves that understanding
 - Lets us validate our models or develop new ones if necessary

"Assume No Friction!!!"

Gather True Downhole Measurements → Compare Against Calculated Data → Update & Improve Model

Critical Validation Step

The Project – Overview

- Design & build downhole dynamometer tools
- Deploy those tools in deviated & horizontal wells
 - Multiple tools throughout the rodstring
 - Retrieve the tools, download the data
- Validate & maintain data in an accessible/published format
- ALRDC’s role is to:
 - Provide “seed” money to initiate this project
 - Generate specifications for both the dynamometer tool & well test procedures/data to be collected
 - Gather industry support and financing
 - Ensure this measured data enters the public domain
• **ALRDC will provide seed money for initial stage of tool design & development**
 – Design expertise & development resources are welcome

• **Tools placed along the rod string, stores data on-board**
 – Location and number of tools to be determined
 • Approximately 6-8 tools per well
 – Tools will be placed at key location on the rod string to capture:
 • Rodstring dynamics caused/influenced by side-loading
 • Mechanical friction due to deviated portions of the wellbore
 • Pump friction
Downhole Dynamometer Tool

Tool Sensors

- Axial/Bending Load
 - Strain Gauges
- Stroke Position
 - 3-Axis Accelerometer
- Pressure (PSI)
- Temperature
- Additional Channels
 - For further expansion

• Non-volatile flash storage
• Time synchronized acquisition
• ~30 days worth of storage/battery
A bit more detail – Test Wells

- All distinct categories of deviated wells
 - Vertical (for control test), Slant, “S”, and Horizontal

- Testing Criteria
 - Test at different SPM – slow & fast pumping speeds
 - At low speeds, mechanical friction forces should be more evident
 - Anchored vs. unanchored tubing
 - Rod guides vs. no rod guides (varying rod guides placement)
 - Rod string configuration (steel, fiberglass, sinker bars)
 - Depth of kick off point
 - Fluid properties
 - Viscosity, gas, etc.
Artificial Lift Research and Development Council (ALRDC)

The ALRDC is an International, Private, Not for Profit organization. There are currently about 2,900 members. Among its functions are:

• Sponsoring International Workshops and Conferences on Sucker Rod Pumping, Gas Well Deliquification, and Gas-Lift
• Helping with other Workshops and Conferences on Electrical Submersible Pumping and Progressing Cavity Pumping
• Helping to sponsor important Artificial Lift R&D projects such as this Horizontal Well Downhole Dynamometer Data Acquisition project
• Maintaining a Technical Library of Artificial Lift reports, articles, etc.
• Providing Scholarships for Students of Artificial Lift at several major Universities

2016 Gas Well Deliquification Workshop
Denver, Colorado
Responsibilities:

• Manage the overall project

• Select and approve the members of each of the sub-committees

• Hold Committee meetings as needed to track the overall project

• Report on the status of the overall project to the ALRDC R&D Committee

• Report on the status of the project at appropriate ALRDC-sponsored Workshops
Business Sub-Committee

Responsibilities:

• Define the technical details of the project
• Define the budget for the project
• Solicit funding for the project
• Manage the finances of the project
• Document the project as it unfolds
• Ensure access to the data once it has been collected, analyzed, and stored
• Determine lease or purchase of the downhole tools – post testing
Responsibilities:

- Select the tool design/manufacturing company
- Design & build the tool
- Test the tool in the lab
- Test it in a vertical well
- Modify the design as needed based on the initial tests
- Test it in a deviated well
- Test it in a horizontal well
- Make final modifications to the design, as needed
Responsibilities:

• Outline testing procedures and well selection criteria
• Select Operating Companies to deploy the tool
• Work with the Operating Company to choose the test wells and design the tool deployment procedures
• Select & work with a Service Company to gather surface dynamometer data during the tests
• Work with the Operating Company to acquire data from the tools when they are pulled
Data Validation
Sub-Committee

Responsibilities:

• Select a Company to validate the data, build a database, and maintain the data

• Work with a Company to validate the collected data

• Work with them to place the data in a database from which the Industry can retrieve the data

• Work with them to develop a database maintenance protocol

• This project will generate a lot of data
ALRDC will provide resources to get this project started

RFQ For Tool Manufacturing

Build & Lab Test Prototype Tools

Build Tools

Deploy Tools, Record Data

Significant Well & Facilities Resources

Industry financial & management support needed
Industry Support

• Developing & manufacturing downhole electronics is an essential part of this project
 – Need industry financing and/or volunteer expertise

• Need deviated & horizontal test wells
 – Wells & workover resources to be provided by Operating Companies
 – Data will be stored on the tools, which will require pulling the well
 – Detailed well files need to be provided and will be made public (well names can be redacted)

• Project & data management resources
Conclusions

• Improved downhole models can result in significant operational expense reductions
 – Better decisions and well designs
 – We can’t eliminate downhole friction, but we should be able to design around it, once better understood

• Gathering real-world data is a first & significant step

“to measure is to know – if you cannot measure it, you cannot improve it”
– Lord Kelvin
Advantages of joining HWDDDA

• Help guide the project
• Access to the measurement tools after initial data collection is completed
• Early access to data:
 – Surface position and load
 – Standing valve test and Traveling valve test
 – Axial and Lateral loads
 – Continuous gyro surveys
 – High resolution deviation surveys
Next Steps

• Join one or more sub-committee(s) and help direct this project

• You can help:
 – Develop testing procedures
 – Participate in tool & data specifications to be implemented by the operations group
 – Provide resources and funding
 – Identify & allow access to test wells
 – Participate in testing
 – Get early access to data and tools
Let us know if you can help…

- Sign up with Lynn Rowlan at the Echometer booth or with Walter Phillips at the Black Gold booth
- Via email, contact Victoria Pons:
 - Victoria.pons@weatherford.com
- Or if you know someone who might be interested in helping…
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.