A Single Life-Cycle Completions Solution

Cost-effectively transition from natural flow to gas lift to plunger lift and on to rod pumping

Rob Hari
VP Product Development
Acknowledgments

1. Greg Wilkes, Broad Oak Energy II LLC
Agenda

- Challenges of horizontal well artificial lift
- Mitigating slug flow
- Slickline accessible artificial lift system
- Field trials
- Conclusion
Production and lifting strategies are characterized by transitions

Predicament
- Must address how to implement the lowest cost lifting system as soon as possible that maximizes drawdown reliably
- Top end of rod pumping is below bottom end of natural flow
- Rod pumping is the preferred choice for low per barrel costs

Slug Mitigation Strategy
1. Control flowback
2. Maximize natural flow period (lowest OPEX)
3. Eliminate or minimize intermediate artificial lift phases
4. Transition to rod pump as early as possible to minimize OPEX
5. Maximize pump reliability and drawdown
Severe slug flow conditions occur around bend / curve compounds slugging in Hz.
HEAL Advantages to Common Gas Lift Challenges in Horizontal Wells

Challenges:

- Liquid Loading in build section
 - Up to 2x gas requirements vs vertical
- Compressor shut downs due to production inconsistency.
- Inefficient lift method stand alone
- Large CAPEX investment to establish field wide infrastructure to make more efficient.

Solutions:

- HEAL lifts build section with no lift gas requirements:
 - Higher injection depth leads to lower gas requirements and lower injection pressures
 - Less lift gas required because in vertical
- Consistent fluid delivery to lowest lift mandrel
- Reduced CAPEX/OPEX due to lower gas requirements and compression horsepower
Downhole System for Slug Flow Mitigation

Conventional Artificial Lift

HEAL Vortex Separator

Sized Regulating String (SRS) - variable ID

Large solids sump

HEAL Seal

Separated gas

Separated oil + water + solids

Fluids turn corner to bottom of shroud
Slickline System: Extend Natural Flow, transition to Gas Lift, and on to Rod Pump

Natural Flow
- HEAL Slickline Separator Flow Through configuration installed (HEAL Slickline Separator is bypassed)
- Extends natural flow period as SRS lifts fluids around bend and delays the onset of liquid loading
- Casing is closed

Gas Lift
- Transition to gas lifting without pulling tubing
- Gas lift same as conventional; injecting gas down production annulus
- HEAL System SRS increases production drawdown over conventional gas lifting as fluids are efficiently lifted around bend section and slug flow is mitigated

Rod Pump
- If required, can transition to rod pump without pulling tubing
- Install HEAL Separator Mandrel
- RIH with insert pump and rods into upper nipple profile
- Casing is open for separated gas
- HEAL System protects pump from gas and solids, as well as maximizes production drawdown.

Formation Fluids (Oil, Water, Gas)
Separated Gas
Oil / Water
Separated Solids
Slickline System: Extend Natural Flow, transition to Plunger Lift, and on to Rod Pump

Natural Flow
- HEAL Slickline Separator Flow Through configuration installed (HEAL Slickline Separator is bypassed)
- Extends natural flow period as SRS lifts fluids around bend and delays the onset of liquid loading
- Casing is closed

Plunger Lift
- Reconfigure to plunger lift configuration (install bumper spring, HEAL Separator Mandrel and standing valve)
- Plunger Lift similar to conventional
- Bumper spring landed shallower to improve efficiency; enables more cycles per day allows for lower GLR
- Casing is closed (unless gas assist required)
- SRS discharges to annulus at HEAL Slickline Separator and maintains continuous flow; liquid builds up in annulus, not in production tubing

Rod Pump
- If required, can transition to rod pump without pulling tubing
- Retrieve bumper spring, HEAL Separator Mandrel and standing valve
- Re-install HEAL Separator Mandrel
- RIH with insert pump and rods into upper nipple profile
- Casing is open for separated gas
- HEAL System protects pump from gas and solids, as well as maximizes production drawdown.

HEAL Slickline Separator c/w Flow Through Configuration
- HEAL Slickline Separator c/w Separator Mandrel
- Standing Valve

Plunger Bumper Spring
- HEAL Slickline Separator c/w Separator Mandrel

Separated Solids
- Formation Fluids (Oil, Water, Gas)
- Separated Gas
- Oil / Water
- Separated Solids

HEAL Seal
- SRS
- Insert Pump

2017 Gas-Lift Workshop

Oct. 23 - 27, 2017
Initial Field Trial:

- Straight gas lift
- Short Term function test with Continuous Flow Plungers
- Inject Gas below the system to calibrate gas lift modeling and the required gas-liquid ratio with the system versus the standard plunger lift design parameters

Plunger Lift Case Study

Second Field Trial Well Profiles:

- Permian Basin, Feb-Mar 2017
- 3 wells put on continuous plunger Lift with the HEAL Slickline system
- Irion County, TX
- Wolfcamp Formation

- TVD: 6,000 - 7,000 ft
- IP Rates: 1,000 – 4,000 BFPD
- Watercuts: 50%-75% range after initial post-fracturing clean-up
- Wells typically do not naturally flow, so Gas Lift used to achieve the higher IPs

Plunger Lift Case Study

Second Field Trial Results Well 1:

Plunger Lift Case Study

Second Field Trial Results Well 2:

Plunger Lift Case Study

Second Field Trial Results Well 3:

HEAL Slickline System can be installed as part of initial completion to significantly improve production economics by solving the underlying artificial lift challenge of slug flow behaviour.

Mitigating slug flow from the horizontal adds value

• Solids control
• Efficiency as all lift systems like smooth flow
• Drawdown reliably maximized

Used in conjunction with gas lift reduces lift gas rate and pressure requirements with no drawdown penalty

HEAL Slickline System offers additional value of reduced CAPEX and OPEX:

• Extension of natural flow period
• Simpler and lower cost transition to artificial lift
• Simpler and lower cost transitions between artificial lift systems
• Inter-wellbore communication or frac-hit risk mitigation
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Website.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (hereinafter referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.