Two-Piece Plunger Fall Velocities and Practical Application in the Field

Sergey Busygin, Production Operations, Shell
Lynn Rowlan, Engineer, Echometer Company
DEFINITIONS AND CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments, including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2012 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation. [insert date]. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No. 1-32573, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
Introduction

- Previously 2-piece plunger fall velocity has not been measured using Echometer plunger tracking techniques.
- Now can recognize 2-piece collars echoes by combining:
 - High frequency data sampling rate (480 HZ)
 - New TAM software improves plunger tracking capabilities and visualization.
- Observations: plunger fall against flow, plunger fall against no flow, fall velocity when sleeve catches the ball prior to reaching the Bumper Spring Assembly, BSA, and rise velocity.
- Field examples will be discussed: 1) broken plungers, 2) damaged BSAs and 3) loaded wells due to plunger falling off the rod.
2-piece plunger tracking
TWO PIECE

• Sleeve
• Ball
• Bumper Spring Assembly

MECHANICAL COMPONENTS

• LUBRICATOR
• SURFACE SPRINGS
• ANVIL
• SHIFTING ROD
Data Collection – for Fast Falling Plunger

30 HZ “Noise” @ 480 HZ Becomes Data

- 30 HZ
- 480 HZ

1.0 min

0.1 min

Noise

Collars
Zoom in to See Sleeve Fall Fast (480 HZ)

Elapsed Time of 8.0 Seconds

Can Determine 3189 ft/min Sleeve Fall Velocity
Acquired Data is Now Easier to See

Limited 800x600 Size

Limited by Screen Size
2-Piece “Normal” Plunger Cycle

With Afterflow

Plunger Falling

psi (g)

Casing Pressure
Tubing Pressure
Tubing Acoustic

Time - minutes
Two Piece Plunger Cycle

Source: DR. James F. Lea

1. Ball and cylinder rise together.
2. Cylinder slides over rod - ball falls.
3. Ball goes to bottom.
5. Ball & cylinder rise again.

Possible liquid load

Gas
7 Sleeve at Surface
8-9 During 20 sec Shut-in to release sleeve of rod

<table>
<thead>
<tr>
<th>#</th>
<th>DESCRIPTION</th>
<th>TIME</th>
<th>TUBING psi (g)</th>
<th>CASING psi (g)</th>
<th>ACOUSTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Afterflow Holds Sleeve on Rod at Surface - Ball Fall</td>
<td>2024.95</td>
<td>419.0</td>
<td>553.3</td>
<td>-0.006512254</td>
</tr>
<tr>
<td>8</td>
<td>Shutin to release Sleeve from Rod</td>
<td>2373.31</td>
<td>418.2</td>
<td>551.3</td>
<td>0.029095411</td>
</tr>
<tr>
<td>9</td>
<td>Motor Valve Opens</td>
<td>2392.62</td>
<td>458.0</td>
<td>551.0</td>
<td>0.000158846</td>
</tr>
<tr>
<td>10</td>
<td>Ball and Sleeve Seal Lifting Liquid</td>
<td>3635.23</td>
<td>410.0</td>
<td>549.4</td>
<td>-0.001422763</td>
</tr>
<tr>
<td>11</td>
<td>Sleeve Slides Over Rod - Ball Falls</td>
<td>3712.99</td>
<td>500.8</td>
<td>547.6</td>
<td>0.001041293</td>
</tr>
</tbody>
</table>

Feb. 20 - 22, 2017
2017 Gas Well Deliquification Workshop
Denver, Colorado
Plunger Cycle – Shut-in After Arrival

Sleeve Falls

Ball+Sleeve Fall

Sleeve catches the ball

Tubing:
IG IG1083

Casing:
PT 15591

PT 15288

Elapsed Time

End Time: 01:16:18 PM
Duration: 01:06:23
Sample Rate: 480 hz

Selection: 13.005 min

007972 mV
286.0 psi (g)

283.5 psi (g)

Feb. 20 - 22, 2017

2017 Gas Well Deliquification Workshop
Denver, Colorado

12
@ 50th Joint
Sleeve caught the ball

<table>
<thead>
<tr>
<th>#</th>
<th>Time (clock)</th>
<th>Velocity (ft/min)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C49</td>
<td>12:37:57 PM</td>
<td>-2931.52</td>
<td>1526.22</td>
</tr>
<tr>
<td>C50</td>
<td>12:37:58 PM</td>
<td>-2342.15</td>
<td>1557.37</td>
</tr>
<tr>
<td>C51</td>
<td>12:38:01 PM</td>
<td>-791.74</td>
<td>1588.52</td>
</tr>
<tr>
<td>C52</td>
<td>12:38:03 PM</td>
<td>-888.18</td>
<td>1619.66</td>
</tr>
</tbody>
</table>

Average Plunger Vel. (gas): -1215.49 ft/min
Average Jts/min (gas): 39.024

Sleeve Only

Sleeve+Ball

Plunger Hits Liquid: 4982 ft

Bottom of T
Sleeve/Ball Arrive at Surface

19.5 min Ball and Sleeve Arrive at Surface
Shifting Rod Knocks Ball off Sleeve.
Ball Falls and Sleeve held at Surface.

Ball Seated in Sleeve
Reaches Max Depth of
3677 Ft
Sleeve Released from Shifting Rod

20.467 min ~ Increasing Tubing Pressure Releases Sleeve from Shifting Rod

Sleeve Only Falls at an Average 2242 Ft/Min
Sleeve Catches Ball in 1782 Feet

- Ball Only Falls at $\frac{1782}{(21.333 - 19.5)}$ an Average 972 Ft/Min
- Ball Seated in Sleeve Falls at an Average 275 Ft/Min
- 21.333 min ~ Sleeve Catches Ball at Depth of 1782 ft from Surface
Before Dropping Sleeve Must Know Ball Fall Velocity – Wait Until Ball Falls

Gas(0.65) - Various V_{fall} rates for Ball

972 Ft/Min
Two Piece Plunger Can Fall Fast (480 HZ)

Elapsed Time of 1.617 Minutes

61.55 Min Sleeve On Bottom

59.933 Min Sleeve Off Shifting Rod
Sleeve Averaging -3189 Ft/Min Fall

Define Cycle Cycle Limits Plunger Fall Gas Properties

Selection: 8.00 sec

<table>
<thead>
<tr>
<th>#</th>
<th>Time (min)</th>
<th>Velocity (ft/min)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>59.968</td>
<td>-1407.63</td>
<td>32.31</td>
</tr>
<tr>
<td>C2</td>
<td>59.982</td>
<td>-2308.80</td>
<td>64.61</td>
</tr>
</tbody>
</table>

Average Plunger Vel. (gas): -3189.33 ft/min Average Jts/min (gas): 98.719
Average Plunger Vel. (Liq.): -0.00 ft/min Average Jts/min (Liq.): 0.000
Count Collars to 3133 Ft
Damaged plungers
Conclusion

• Field data shows 2-piece plunger fall velocity can be measured using Echometer plunger tracking techniques
• Need to use High Speed Data Acquisition (480 HZ)
• Software improved visualization displays 100 echoes per minute at reasonable scale to determine plunger velocity
• 2-piece plunger
 – Fell 2200 ft/min against flow,
 – Fell against 3600 ft/min no flow
 – Sleeve catches the ball prior to reaching the BSA
• Common problems are: 1) broken plungers, 2) damaged BSAs and 3) loaded wells due to sleeve falling off rod
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.