High Speed Video Observations for Plunger Lift Upstroke

Eduardo Pereyra, The University of Tulsa
Deng Pan, The University of Tulsa
Cem Sarica, The University of Tulsa
Overview

- Plunger lift is widely used for gas well deliquification
- Several modeling studies has been proposed
 - Foss and Gaul (1965)
 - Lea (1982)
 - Rosina (1983)
 - Gasbarri and Wiggins (1996)
 - Maggard et al. (2000)
 - Zhao et al. (2017)
Some other studies focused on experimental evaluation

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Facility Height</th>
<th>Facility Dimension</th>
<th>Test Fluids</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beason et al.</td>
<td>1958</td>
<td>From 3050-ft</td>
<td>2-in Plunger</td>
<td>Oil</td>
<td>Empirical Correlation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To 11727-ft</td>
<td>2.5-in Plunger</td>
<td>Gas</td>
<td></td>
</tr>
<tr>
<td>Rosina</td>
<td>1983</td>
<td>60-ft</td>
<td>1-in Tubing</td>
<td>Air</td>
<td>Plunger Velocity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-in Casing</td>
<td>Water</td>
<td>Liquid Fall Back</td>
</tr>
<tr>
<td>Hernandez et al.</td>
<td>1993</td>
<td>65-ft</td>
<td>2 3/8-in Tubing</td>
<td>Air</td>
<td>Plunger Velocity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No Casing</td>
<td>Water</td>
<td>Liquid Fall Back</td>
</tr>
<tr>
<td>Baruzzi</td>
<td>1995</td>
<td>4.3-ft</td>
<td>1.8-in Tubing</td>
<td>Oil</td>
<td>Plunger Velocity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.9-in Casing</td>
<td>Gas</td>
<td>Production Rate</td>
</tr>
<tr>
<td>Zhao et al.</td>
<td>2017</td>
<td>33-ft</td>
<td>2.44-in Tubing</td>
<td>Air</td>
<td>Optimum Diameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No Casing</td>
<td>Water</td>
<td>Plunger Velocity</td>
</tr>
</tbody>
</table>
In general

- Assumption of constant plunger rise velocity (Foss and Gaul 1965)
- Most of the studies neglected gas slippage
- No study emphasized different plunger designs

This study is focused on plunger fluid interaction using high speed video recording

- Different type of plungers are considered
Facility

- Independent variables
 - Liquid load
 - Casing pressure

- Measurements
 - Produced liquid
 - Low frequency
 - Liquid load
 - Pressure readings
 - Return liquid level
 - High frequency
 - Sensor readings
Plungers

<table>
<thead>
<tr>
<th></th>
<th>Spiral</th>
<th>Dual Pad</th>
<th>Brush</th>
<th>Venturi Viper</th>
<th>Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td></td>
<td>#1</td>
<td>#1</td>
<td>V6</td>
<td>Stock</td>
</tr>
<tr>
<td>New</td>
<td></td>
<td>#2</td>
<td>#2</td>
<td>V10</td>
<td>Sphere</td>
</tr>
</tbody>
</table>

- **Spiral**
- **Dual Pad**
- **Brush**
- **Venturi Viper**
- **Bar**

Used
- V6
- V10

New
- Stock
- Sphere
Experimental Matrix

- 11 plungers plus base case (no plunger)
- 7 repetitions (76 conditions, 532 experiments)

<table>
<thead>
<tr>
<th>L_s [ft.]/P_c [psi]</th>
<th>4-ft</th>
<th>6-ft</th>
<th>8-ft</th>
<th>Plungers</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 psi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>11</td>
</tr>
<tr>
<td>12 psi</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>11</td>
</tr>
<tr>
<td>7 psi</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>7</td>
</tr>
</tbody>
</table>
Experimental Procedure
Plunger Velocities ($p_{Casing} = 15$ psig)

Bar Stock 1.90

- $W = 7.3$ lb
- $OD = 1.90$ in.
- $L = 14$ in.

Sphere

- $W = 1$ lb
- $OD = 1.90$ in.
- $L = 1.90$ in.
Plunger Velocities \(\left(p_{\text{Casing}} = 15 \text{ psig} \right) \)...

Bar Stock 1.90

\[W = 7.3 \text{ lb} \]
\[OD = 1.90 \text{ in.} \]
\[L = 14 \text{ in.} \]

Bar Stock 1.85

\[W = 7.3 \text{ lb} \]
\[OD = 1.85 \text{ in.} \]
\[L = 14 \text{ in.} \]
Plunger Velocities (6 ft Load)

Casing Pressure = 15 psi

Casing Pressure = 12 psi

Plunger Velocity (fpm)

Section #1 Section #2 Section #3 Section #4 Section #5 Section #6

- Sphere
- Brush #2
- Bar Stock 1.85
- V6
- Dual Pad #1
- New Spiral

- Bar Stock 1.90
- Brush #1
- Used Spiral
- Dual Pad #2
- V10

Feb. 4 - 7, 2018 2018 Artificial Lift Strategies for Unconventional Wells Workshop Oklahoma City, OK
Plunger Fluid Behavior

- Slug front
- Liquid slug region
- Taylor bubble region
- Plunger front
- Plunger region
- Gas blowing trough
- Film region
- Droplets
Slug Body Characteristics

4-ft
6-ft
8-ft
Taylor Bubble Characteristics

4-ft 6-ft 8-ft
Liquid Slug Characteristics

\[\frac{\alpha}{\beta} \text{ Pixels} = \frac{\text{Pipe Diameter}}{\text{Distance}} \]

\[\text{Velocity} = \frac{\text{Distance}}{\text{Frames}/2500\text{FPS}} \]
Liquid Slug Characteristics…

![Graph showing velocity comparison for different devices](image-url)
Film Left Behind

No plunger

Bar Stock plunger
Main source of liquid fall back
For the investigated plungers
 - 10%-15%

Clearance

\[
\text{Clearance} = 1 - \frac{\pi \cdot D_{\text{Plunger}}^2}{\pi \cdot ID_{\text{Tubing}}^2}
\]
Clearance Effect

Bar Stock 1.85

Bar Stock 1.90
Droplets

- During after flow, gas flow carries liquid droplets moving upward
- These droplets are the liquid below the plunger/bumper spring
- Negligible for the project
- Example showing
 - 1.90-in diameter rod plunger
 - Casing pressure = 15 psi
 - Liquid load = 8-ft
Final Observations

<table>
<thead>
<tr>
<th>Plunger Style</th>
<th>Plunger Velocity</th>
<th>High Speed Video Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Stock 1.90</td>
<td>Higher load results in lower velocity; plunger slows down after reaching maximum velocity; the higher the load, the earlier plungers start to slow down</td>
<td>Gas move faster than plunger in the annulus and sweep liquid film upward</td>
</tr>
<tr>
<td>Bar Stock 1.85</td>
<td>Slightly faster in small load condition; Slightly slower in high load condition</td>
<td>Similar gas behavior; Thicker film and more droplets left behind</td>
</tr>
<tr>
<td>Used Spiral</td>
<td>Slower in all conditions</td>
<td>Similar gas behavior; Holes on body emits gas</td>
</tr>
<tr>
<td>New Spiral</td>
<td>Slower in all conditions; Slower than Used Spiral in all conditions</td>
<td>Similar gas behavior; Holes on body emits gas</td>
</tr>
<tr>
<td>Dual Pad #1</td>
<td>Slower in all conditions</td>
<td>Similar gas behavior; Pads sweeping the pipe wall</td>
</tr>
<tr>
<td>Dual Pad #2</td>
<td>Slower in all conditions; Slower than Dual Pad #1 in all conditions</td>
<td>Similar gas behavior; Pads sweeping the pipe wall</td>
</tr>
<tr>
<td>Brush #1</td>
<td>Higher in all conditions</td>
<td>Similar gas behavior</td>
</tr>
<tr>
<td>Brush #2</td>
<td>Faster when casing pressure is 15 psi and 12 psi; slower when casing pressure is 7 psi</td>
<td>Similar gas behavior; Gas bubbles trapped in the fishneck</td>
</tr>
<tr>
<td>Venturi V6</td>
<td>Slower when casing pressure is 15 psi and 12 psi; faster when casing pressure is 7 psi</td>
<td>Similar gas behavior</td>
</tr>
<tr>
<td>Venturi V10</td>
<td>Slowest among all plungers in all conditions</td>
<td>Similar gas behavior</td>
</tr>
<tr>
<td>Sphere</td>
<td>Fastest among all plungers in all conditions</td>
<td>Similar gas behavior</td>
</tr>
</tbody>
</table>
Final Observations

<table>
<thead>
<tr>
<th>Plunger Style</th>
<th>Taylor Bubble Velocity</th>
<th>Differential Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Stock 1.90</td>
<td>Aroung 1550 fpm</td>
<td>Aroung 400 fpm</td>
</tr>
<tr>
<td>Bar Stock 1.85</td>
<td>Higher</td>
<td>Higher</td>
</tr>
<tr>
<td>Used Spiral</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>New Spiral</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>Dual Pad #1</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>Dual Pad #2</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>Brush #1</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>Brush #2</td>
<td>Similar</td>
<td>Similar</td>
</tr>
<tr>
<td>Venturi V6</td>
<td>Significantly higher</td>
<td>Significantly higher</td>
</tr>
<tr>
<td>Venturi V10</td>
<td>Even higher than V6</td>
<td>Even higher than V7</td>
</tr>
<tr>
<td>Sphere</td>
<td>Higher</td>
<td>Similar</td>
</tr>
</tbody>
</table>
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.