I’ve Fixed the Liquid Loading Problem, What Happened to the Condensate?

Rob Sutton, RPSC
Stuart Cox, PetroEdge Energy IV LLC
Overview

- Use compression to deliquify wells
 - Reduce surface operating pressure
 - Increase well’s flow velocity > critical velocity
 - Improve efficiency in liquids removal
- Focus on condensate production
 - Enhanced economics with current prices
- Optimized well
 - Stabilized gas rate
 - Possible reduction in condensate rate
Calculated CGR
Separator Optimization

- Peng-Robinson Equation of State (EOS) used for optimization calculations
- Condensate is a light, volatile liquid
- Producing condensate-gas ratio (CGR) is a function of separator conditions
- Literature examples for oil wells
- Examine a range of gas-condensates (lean-to-rich) to investigate performance tendencies
2 Stage Separation Facilities

Reservoir → Well → Separator → Gas → VRU → Stock Tank → Oil Sales

Well

Separator

Gas

Oil

Stock Tank

Oil Sales
Oil Well Optimization Example

Example Oil Case

Optimized at maximum API, minimum GOR & FVF
Effect of Temperature

Example Oil Case

API Gravity vs. 1st Stage Pressure, psig

Example Oil Case

Total GOR, SCF/STB vs. 1st Stage Pressure, psig
Product Prices

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>55.00 $/STB</td>
</tr>
<tr>
<td>Gas</td>
<td>3.00 $/MMBtu</td>
</tr>
<tr>
<td>Ethane</td>
<td>0.25 $/Gal</td>
</tr>
<tr>
<td>Propane</td>
<td>0.95 $/Gal</td>
</tr>
<tr>
<td>Butanes</td>
<td>1.05 $/Gal</td>
</tr>
<tr>
<td>Pentanes-plus</td>
<td>1.20 $/Gal</td>
</tr>
<tr>
<td>Component</td>
<td>Efficiency</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>C2</td>
<td>0.90</td>
</tr>
<tr>
<td>C3</td>
<td>0.95</td>
</tr>
<tr>
<td>iC4</td>
<td>0.98</td>
</tr>
<tr>
<td>nC4</td>
<td>0.98</td>
</tr>
<tr>
<td>iC5</td>
<td>0.98</td>
</tr>
<tr>
<td>nC5</td>
<td>0.98</td>
</tr>
<tr>
<td>C6+</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Revenue Distribution – Oil Well

Example Oil Case - Revenue Distribution

Fraction of Total Revenue

1st Stage Pressure, psig

- Oil
- Gas
- Plant Liquids
CGR Optimization
2 Stage, CGR = 20 STB/MMCF
CGR Change at Low Pressure
2 Stage, CGR= 20 STB/MMCF

Fraction of Maximum Yield - 2 Stage, 1st Stage 35 psig, 75 °F

Condensate-Gas Ratio, STB/MMCF

Fraction of Maximum CGR

Condensates
Black Oils
Change in Gas Properties
2 Stage, CGR= 20 STB/MMCF
Revenue Distribution
2 Stage, CGR= 20 STB/MMCF
Natural Gas Heating Value

![Natural Gas Heating Value Graph]

- **Y-axis:** Dry Heating Value, MMBtu/MSCF
- **X-axis:** Hydrocarbon Gas Gravity

2018 Artificial Lift Strategies for Unconventional Wells Workshop

Oklahoma City, OK
Gas Gravity & Plant Liquid Yield

Plant Liquid Yield

High Efficiency Plant Associated Gases
Revenue Optimization

2 Stage, CGR= 20 STB/MMCF
Revenue Optimization
2 Stage, Different CGR & GOR

Change in Revenue

% Change

1st Stage Separator Pressure, psig

CGR=5 STB/MMCF
CGR=20 STB/MMCF
CGR=50 STB/MMCF
CGR=100 STB/MMCF
CGR=150 STB/MMCF
GOR=600 SCF/STB
Historical Oil & Gas Price

Natural Gas & WTI Oil Historical Prices

Henry Hub Gas Price, $/MMBtu

WTI Spot Oil Price, $/STB
3 Stage Separation Facilities

Note: 2nd Stage fixed at 20 psia & 125 °F
CGR Change at Low Pressure
3 Stage, CGR= 20 STB/MMCF

Fraction of Maximum Yield - 3 Stage, 1st Stage 35 psig, 75 °F

Condensates
Black Oils

Condensate-Gas Ratio, STB/MMCF
Change in Gas Properties
3 Stage, CGR= 20 STB/MMCF
Variation in Revenue Streams

Change in Revenue

<table>
<thead>
<tr>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00</td>
</tr>
<tr>
<td>-0.75</td>
</tr>
<tr>
<td>-0.50</td>
</tr>
<tr>
<td>-0.25</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st Stage Pressure, psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>750</td>
</tr>
<tr>
<td>1,000</td>
</tr>
</tbody>
</table>

- 2 Stage
- 3 Stage

Feb. 4 - 7, 2018
2018 Artificial Lift Strategies for Unconventional Wells Workshop
Oklahoma City, OK
Observations

- Surface operating pressure
 - Reduction necessary to maintain production
 - Effect on rate does not correspond to a similar effect on value

- Oil Well Optimization (traditional recommendation)
 - Maximize Oil API
 - Minimize GOR
 - Minimize Oil FVF

- Oils - revenue is dominated by oil value

- Gas-condensate Well Optimization
 - Lean CGR systems - revenue dominated by gas and plant liquid value
 - Significant decline in yield can occur at low separator pressure
 - Revenue change small compared with CGR change
Other Considerations

- Revenue optimization
 - Ensures value is maximized for all well performance and product price scenarios
- Gas condensate well revenue dominated by gas stream sourced sales
 - Plant liquids
 - Gas Btu
 - Ensure timely gas compositional analyses to secure value
Pipeline Transport of Rich Gases
2 Stage, Tsep=75 °F, CGR= 20 STB/MMCF
Pipeline Transport of Rich Gases
2 Stage, Tsep=75 °F, CGR= 20 STB/MMCF
Final Observations

- Rich gas pipeline transport
 - Low separator pressure results in richer gas
 - Susceptible to liquids dropout in line
 - Higher dropout at lower temperature
 - Dropout of heavy gas components
 - Gas shrinkage
 - Reduction in gas gravity
 - Reduced plant liquid yield
 - Reduced plant liquid value

- Know your operation
 - Avoid pitfalls that effect operational and revenue streams
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.