A Paradigm Shift in Casing Design for Unconventional Wells

Brian Ellithorp - BlackJack Production Tools
DJ Snyder - BlackJack Production Tools
Outline

- Make Artificial Lift/Production a Priority
- Production Lifecycle Anticipations
- Altering Lift Application Perception
- Simulations and Anticipated Results
- New Casing Separation Technology
Production Equipment Advances

- *Artificial lift in North America onshore: evolution, not revolution*
- McKinsey & Company

The first challenge is an operator mindset that often deprioritizes production phase services like artificial lift. Additional investment in more complex well designs (e.g. deeper wells, longer laterals), higher quality completions equipment, and larger volumes of proppant is viewed as a prudent expense that will increase a well’s estimated ultimate recovery (EUR) and boost an operator’s profitability. While outfitting a well with premium lift equipment can reduce intervention frequency and moderately increase production rates, the value of increased investment in artificial lift in a highly price-sensitive environment is less clear to operators.

Liquid Loading in Unconventionals

Production Decline

Top 8 Bakken Operators Comparison By Year of 1st Production

- 2016 Declining Faster Than Other Years Despite Higher Cumulative Production
- 2015 Declining Faster Than Other Years

Months of Production

Gas Related Challenges Keep Coming

Bakken ND - Average Gas to Oil Ratio by date
Confidential months are not included
Based on NDIC data, February 2016

9 Years

New Technology / Process

New AL Gas Separation Technology Applied Downhole

- 34 months
- 5 months

<table>
<thead>
<tr>
<th>Avg post install 5 mth</th>
<th>86.3</th>
<th>92.5</th>
<th>294.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg pre install 1 yr</td>
<td>28.5</td>
<td>47.9</td>
<td>145.8</td>
</tr>
<tr>
<td>Improvement</td>
<td>203%</td>
<td>93%</td>
<td>102%</td>
</tr>
<tr>
<td>Added Revenue</td>
<td>$476,850</td>
<td></td>
<td>$66,735</td>
</tr>
</tbody>
</table>
Production Lifecycle – Altered…

[Graph showing production decline with projected values for different lifecycles:
- Online 24 month Incremental Projections:
 - High 16% Gain: $1,628,788
 - Mid 12% Gain: $1,221,591
 - Low 8% Gain: $814,394
- Online 36 month Incremental Projections:
 - High % Gain: $2,089,330
 - Mid % Gain: $1,566,998
 - Low % Gain: $1,044,665]
Highly Efficient Production

![Graph showing Inflow Performance Relationship (IPR) and Tubing Performance Curve (TPC = VLP). The graph illustrates static pressure declining with time and the points where flows are free, pumped, or at future pumped rates.](http://frontender.com/blog/wp-content/uploads/2014/08/WellPerformanceOptimization-1024x758.jpg)
Lifting Instead of Suppressing

- Permian - Wolfcamp - High Liquids Producer

Gas Incremental 12%

Oil Incremental 12%

Online 24 month Incremental Projections

- $4,239,845 High 16% Gain
- $3,179,883 Mid 12% Gain
- $2,119,922 Low 8% Gain
Casing Gas Separator (CGS)
How is This Achieved?

- Utilize wasted open-hole space to your advantage
- Create artificial “sump” in wellbore; like vertical well
- Create maximum separation capacity/process and improve Peak Performance Envelope
- There is no compromise for adding significant separation area to a wellbore
Downhole Gas Separation System

CGS Simple RP Set up

5.5” Casing Max Separation Capacity: ~600 bfpd

VS.

5.5” x 7” CGS Max Separation Capacity: ~1300 bfpd
Computational Fluid Dynamics

Bottom

Top
CGS+ESP Nodal Analysis

Well #1H

Across Top Ports w/ ESP

Across Top Ports w/ 4” ESP

Above Top Ports w/ ESP

Traveling Up Inside CGS

Traveling Up Inside 7”x5.5” CGS

3.0MMcfd, 3000bfpd, 1000#PIP, 50% oil cut

Conclusion

- CGS is the most cost-effective and low-risk, solution that allows real performance and profit altering results.

- Ease and breadth of application can provide significant low-cost/high-reward benefit.

- The industry is far overdue for a technological advancement on this front as it relates to horizontal wells.
Questions

Brian.Ellithorp@blkjpt.com
405-837-0173
www.blkjpt.com

DJ.Snyder@blkjpt.com
713-598-8657
www.blkjpt.com
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
Pre: 2.5MM, 4600 bfpd, 25% oil cut
Post: 2.8MM, 5200 bfpd, 25% oil cut
CGS + Echometer UPS

5.5” Casing Max
Separation Capacity:
~600 bfpd

VS.

5.5” x 7” CGS Max
Separation Capacity:
~1300 bfpd
CGS + Desander

5.5” Casing Max Separation Capacity: ~600 bfpd

VS.

5.5” x 7” CGS Max Separation Capacity: ~1300 bfpd
CGS Results

- Creates “route-around” for all gas to be avoided
- Greatly increase drawdown capability without generating interference
- Eliminate slugging at the pump, thus limits on-off cycling and inherent problems:
 - Sand fallback in all forms
 - Stuck pumps in all forms
 - Heat cycling in ESPs
- Reduce failures and downtime as well as lost/deferred revenues