Adapting Load Factor For Use In Unconventional Wells

Well Master Corporation
Ben Nathan & David Green, P.Eng.
A TRUSTED TOOL WITH UNANTICIPATED RESULTS

- **Load Factor (LF)**
 - Plunger-Lift Control Parameter
 - Widely respected and widely used in industry
 - In use for decades
 - In Unconventionals, we often hear “It Doesn’t Work!”
 - When it “Doesn’t Work” people find they need to use a LF $<< 0.5$

- **Why?**
Complication 1: Pressure Relieving Standing Valve (PRSV)
- Can Make A Positive Impact to Production
- “Hold a load” Retain liquid in the tubing at equilibrium conditions
- Non-relieving valves used less and less due to uncertain load and inability to force liquid out of tubing
- Most commonly used in High Set or Horizontal Wells
- What do we even really understand about PRSV in Vertical Wells?
- When using LF control algorithm, user must modify approach!

Complication 2: Horizontal Wells
- Also, Inclination Complications
- Slug increases in head when it transitions from Horizontal to Vertical
- When using LF control algorithm, user must modify approach!
BREAKING DOWN THE PROBLEM

- **Step One:** Consider a Traditional Vertical Well
- **Step Two:** Consider a Traditional Vertical Well with a PRSV
 - This introduces a complicating factor.
 - We need to adjust for this factor.
- **Step Three:** Consider a Non-Vertical Well
 - Highly Inclined, Deviated, or Horizontal Well
 - This introduces another complicating factor…
 - We also need to adjust for this factor.
- **Step Four:** Consider a Non-Vertical Well with a PRSV
 - How can we still use Load Factor as a Control Parameter?
What is Load Factor?

- It is used as a control parameter to determine when to open the production valve in plunger lift wells.
- It is effectively a ratio of Hydrostatic Load to available power.

How is the parameter calculated?

\[LF = \frac{(P_{Csg} - P_{Tbg})}{(P_{Csg} - P_{Line})} \]

- If LF > 0.5 Plunger likely won’t run
- If LF < 0.5 Plunger will likely run
STEP ONE: VERTICAL LOAD FACTOR

At Equilibrium, No Flow Condition
(Ignoring Gas Gradient)

Right before Kick-On

Force Balance @ EOT

\[LF = \frac{(P_{Csg} - P_{Tbg})}{(P_{Csg} - P_{Line})} \]

\[P_{Tbg} \]

\[\rho gh_l \]

\[P_{Csg} \]
SECOND, WHAT CHANGES WHEN WE INSTALL A PRSV?

- Goal of PRSV is to ensure we always retain liquid in the bottom of the tubing.

- Even when we are equalized we still have a load.

\[
(P_{Csg} - P_{Tbg}) = 0
\]
STEP TWO: VERTICAL PRSV LOAD FACTOR

- Force Balance Diagram with Added PRSV Spring

- At Kick-On, with a PRSV Installed

\[
\text{Load} = (P_{Csg} - P_{Tbg} + PRSV)
\]

\[
\text{Power} = (P_{Csg} - P_{Line})
\]

\[
LF = \frac{\text{Load}}{\text{Power}}
\]

\[
LF = \frac{(P_{Csg} - P_{Tbg} + PRSV)}{(P_{Csg} - P_{Line})}
\]

- We may have to reduce \((P_{Csg} - P_{Tbg} + PRSV)\) to maintain \(LF < 0.5\)

- May have to allow higher \(P_{Tbg}\) to keep \(LF < 0.5\)

Right before Kick-On

At Equilibrium, No Flow Condition (Ignoring Gas Gradient)
WHAT DOES THIS MEAN FOR THE PUMPER?

Installing a PRSV may require reducing \((P_{Csg} - P_{Tbg} + PRSV)\) to keep LF < 0.5

You could still use Load Factor as a control parameter if:

1.) You include the PRSV Spring-Force in your Automation LF Calculations

Or

2.) You hand calculate the LF Value (including PRSV Spring-Force) & directly input the parameter
THIRD, LET’S UNDERSTAND LOAD IN A HORIZONTAL OR INCLINED WELL

Simplification for Horizontals: Let’s Assume EOT is usually at or above Liquid Level in Casing
STEP THREE: HORIZONTAL OR INCLINED WELL

Hydrostatic Load increases as plunger “turns the corner” to Vertical

TVD_L = h_L + H
MD_L = Arc Length of h_L + H
STEP THREE: WHAT HAPPENS DURING THE LIFT CYCLE?

- Volume of fluid column above plunger remains constant
- Vertical height of fluid column above plunger increases
 - Liquid height changes from $\text{TVD}_L \rightarrow \text{MD}_L$
- During Plunger Rise, Hydrostatic Load Increases as liquid column becomes more vertical
- Initial available Power does not change
- May need to reduce initial load to ensure we can lift through Vertical
- How Much?
 - Probably need to reduce Load sufficiently to keep LF < 0.5
WHAT DOES THIS MEAN FOR THE PUMPER?

- High inclinations require reduction in \((P_{Csg} - P_{Tbg})\) to keep LF < 0.5

- You could still use Load Factor as a control parameter if you account for inclination in LF Calculations

\[
Load = (P_{Csg} - P_{Tbg}) \times \left(\frac{MD_L}{TVD_L}\right)
\]

\[
Power = (P_{Csg} - P_{Line})
\]

\[
LF = \frac{Load}{Power}
\]

\[
LF = \frac{(P_{Csg} - P_{Tbg}) \times \left(\frac{MD_L}{TVD_L}\right)}{(P_{Csg} - P_{Line})}
\]
STEP THREE: REAL LIFE EXAMPLE!

- BHA at 64° inclination,
- Initial Load $h_L = TVD_L = 50'$

- Once the plunger “turns the corner” past the KOP to vertical
- Volume conserved, height of liquid load increases to $h_L = 102'$

- New height was MD_L at equilibrium

- Load increases by $102' / 50' = 2.04$ Times during plunger cycle

- Therefore, may need to reduce initial load to keep LF < 0.5
STEP THREE: REAL LIFE EXAMPLE!

- BHA at 64° inclination,
- Initial Load $h_L = \text{TVD}_L = 50'$

- Once the plunger “turns the corner” past the KOP to vertical
- Volume conserved, height of liquid load increases to $h_L = 102'$

- New height was MD$_L$ at equilibrium

- Load increases by $102' / 50' \times 2.04$ (2.04 Times) during plunger cycle

- Therefore, may need to reduce initial load to keep LF < 0.5
STEP THREE: REAL LIFE EXAMPLE!

- BHA at 64° inclination,
- Initial Load $h_L = TVD_L = 50'$
- Once the plunger “turns the corner” past the KOP to vertical
- Volume conserved, height of liquid load increases to $h_L = 102'$
- New height was MD_L at equilibrium
- Load increases by $102' / 50' \times 2.04 \text{ Times}$ during plunger cycle
- Therefore, may need to reduce initial load to keep $LF < 0.5$
FINALLY, TYING IT ALL TOGETHER

Load increases both by PRSV & as plunger “turns the corner” to Vertical

Arc Length above KOP

Arc Length below KOP

TVD_L = h_L
MD_L = Arc Length of h_L

Feb. 4 - 7, 2018
2018 Artificial Lift Strategies for Unconventional Wells Workshop
Oklahoma City, OK
STEP FOUR: ADAPTING LOAD FACTOR

- Modify Initial Force Balance Diagram with PRSV Spring Bias
- Need to account for increase of Load when “turning the corner”

- At Kick-On:
 \[\text{Load} = (P_{Csg} - P_{Tbg} + PRSV) \]
 \[\text{Power} = (P_{Csg} - P_{Line}) \]

- When “Turning the Corner”:
 \[\text{Load} = (P_{Csg} - P_{Tbg} + PRSV) \times \left(\frac{MD_{L}}{TVD_{L}}\right) \]

- Therefore, need to further reduce to keep LF < 0.5
 \[LF = \frac{\text{Load}}{\text{Power}} = \frac{(P_{Csg} - P_{Tbg} + PRSV) \times \left(\frac{MD_{L}}{TVD_{L}}\right)}{(P_{Csg} - P_{Line})} \]
Installing a PRSV may require reducing \((P_{Csg} - P_{Tbg} + PRSV)\) to keep LF < 0.5

High inclinations require further reduction in \((P_{Csg} - P_{Tbg}) \times \left(\frac{MD}{TVD_L}\right)\) to keep LF < 0.5

You could still use Load Factor as a control parameter if you combine & account for both PRSV & inclination in LF calculations

\[
Load = (P_{Csg} - P_{Tbg} + PRSV) \times \left(\frac{MD}{TVD_L}\right)
\]

\[
Power = (P_{Csg} - P_{Line})
\]

\[
LF = \frac{Load}{Power}
\]

\[
LF = \frac{(P_{Csg} - P_{Tbg} + PRSV) \times \left(\frac{MD}{TVD_L}\right)}{(P_{Csg} - P_{Line})}
\]
In Summary

- **Step One**: Consider a Traditional Vertical Well
 \[LF = \frac{(P_{Csg} - P_{Tbg})}{(P_{Csg} - P_{Line})} \]

- **Step Two**: Consider a Traditional Vertical Well w/ a PRSV
 \[LF = \frac{(P_{Csg} - P_{Tbg} + PRSV)}{(P_{Csg} - P_{Line})} \]

- **Step Three**: Consider a Non-Vertical Well
 \[LF = \frac{(P_{Csg} - P_{Tbg}) \cdot \left(\frac{MD}{TVD} \right)}{(P_{Csg} - P_{Line})} \]

- **Step Four**: Consider a Non-Vertical Well w/ a PRSV
 \[LF = \frac{(P_{Csg} - P_{Tbg} + PRSV) \cdot \left(\frac{MD}{TVD} \right)}{(P_{Csg} - P_{Line})} \]

 If LF > 0.5 Plunger likely won’t run
 If LF < 0.5 Plunger will likely run
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.