Preventing High Separator Level Events Without Sacrificing Well Performance

Bill Elmer
Enclline Technologies
Horizontal Well Flow Behavior

- The flow behavior of long horizontal wells is similar to pipelines (well horiz section) + riser (vertical section)
Cause of The High Level Problem

- **Riser-Induced Slugging**
 - A. Slug formation
 - B. Slug production
 - C. Gas penetration
 - D. Gas blow-down

- **Terrain Slugging**
 - A: Low spots fills with liquid and flow is blocked
 - B: Pressure builds up behind the blockage
 - C&D: When pressure becomes high enough, gas blows liquid out of the low spot as a slug

Feb. 4 - 8, 2007
2007 Gas-Lift Workshop

Feb. 4 - 7, 2018
2018 Artificial Lift Strategies for Unconventional Wells Workshop
Oklahoma City, OK
A “blowdown” induced tubing gradient reduction has consequences

- Wells much deeper than risers, so .05 psi per foot gradient decrease is
 - 25 psi pressure drop in a 500 foot riser
 - 500 psi pressure drop in a 10,000 foot well

Gas blowdown creates short term BHP drop
What happens when BHP drops?

- If no packer, casing pressure drops as gas rapidly enters the tubing, further reducing tubing gradient.
- Additional terrain slugging likely to occur as trapped gas in lateral expands, penetrating seals.
- Series of expanding gas slugs can seriously reduce tubing gradient.
- Reduced tubing gradient manifests as high tubing pressure for given BHP.
Punkin Chunkin

- What happens when a high pressure gas source is connected to a pipe with something inside it?

- "Big 10 Inch" takes world record shot of 5545 feet in Moab, Utah, September 9, 2010

- The Punkin Chunker barrel is your flowline

Aircraft Catapult
Velocity / Pressure Graph of 9mm round in 16” barrel

- Velocity increasing until round leaves barrel (Blue Line)
Before horizontal wells, installing a high level ESD switch was a uncommon
Impact to the Production Separator

- High pressure gas in tubing expands towards lower pressure separator, increasing velocity of flowline contents
- High velocity turbulent gas sweeps liquid from flowline rapidly into separator (in seconds)
- Separator designed to dump liquids at rates typically 2 to 10 BPM
- 48” x 10’ Separator holds 24 barrels, normally half full, leaving 12 barrels

20 barrel volume in less than 60 seconds = ESD
The Math of a mile long 4” Flowline

- Assume wellhead at 150 psi, separator at 100
- Weymouth formula predicts 51 ft/sec for gas
- Line capacity per foot: .014 barrel per foot
- Result is .71 barrel per second, or 20 barrels in 28 seconds
- 20 barrels is 1428 feet of 100% liquid flowline
- 20 barrels is 2856 feet of 50% liquid flowline, requiring 56 seconds

20 barrel volume in less than 60 seconds = ESD
How to Prevent the ESD Event

- Choke back wellhead flow during gas blowdown phase
 - Prediction of high level event needed as they happen fast, and choke may not react in time
 - Automated high pressure chokes expensive
 - Chokes exposed to all well fluids including sand, therefore prone to wear / cutout
How to Prevent the ESD Event

- Elevate the separator pressure commensurate with tubing pressure rise
 - Applies backpressure to the flowline and wellhead, reducing the driving force
 - Liquids depart separator faster
 - Common practice used to prevent ESD’s
 - Normally implemented by operator changing setpoint on pneumatic pressure controller
 - Results in extra well back pressure 24/7
How to Prevent the ESD Event

- Kimray liquid capacity chart
 - Rates double when pressure drop quadrupled
- Square Root of ΔP relationship
- Viable method to remove liquids quicker

<table>
<thead>
<tr>
<th>PRESSURE DROP ACROSS VALVE - PSIG</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>800</td>
<td>1,500</td>
<td>2,400</td>
<td>9,500</td>
</tr>
<tr>
<td>2</td>
<td>1,150</td>
<td>2,100</td>
<td>3,400</td>
<td>13,450</td>
</tr>
<tr>
<td>3</td>
<td>1,400</td>
<td>2,600</td>
<td>4,150</td>
<td>16,450</td>
</tr>
<tr>
<td>4</td>
<td>1,600</td>
<td>3,000</td>
<td>4,800</td>
<td>19,000</td>
</tr>
<tr>
<td>5</td>
<td>1,800</td>
<td>3,350</td>
<td>5,350</td>
<td>21,250</td>
</tr>
<tr>
<td>10</td>
<td>2,550</td>
<td>4,750</td>
<td>7,600</td>
<td>30,050</td>
</tr>
<tr>
<td>15</td>
<td>3,100</td>
<td>5,800</td>
<td>9,300</td>
<td>36,800</td>
</tr>
<tr>
<td>20</td>
<td>3,600</td>
<td>6,700</td>
<td>10,750</td>
<td>42,500</td>
</tr>
<tr>
<td>30</td>
<td>4,400</td>
<td>8,200</td>
<td>13,150</td>
<td>52,000</td>
</tr>
<tr>
<td>40</td>
<td>5,100</td>
<td>9,500</td>
<td>15,200</td>
<td>60,050</td>
</tr>
<tr>
<td>50</td>
<td>5,700</td>
<td>10,600</td>
<td>16,950</td>
<td>67,150</td>
</tr>
<tr>
<td>60</td>
<td>6,250</td>
<td>11,600</td>
<td>18,600</td>
<td>73,550</td>
</tr>
<tr>
<td>70</td>
<td>6,750</td>
<td>12,550</td>
<td>20,100</td>
<td>79,450</td>
</tr>
<tr>
<td>80</td>
<td>7,200</td>
<td>13,400</td>
<td>21,450</td>
<td>84,950</td>
</tr>
<tr>
<td>90</td>
<td>7,650</td>
<td>14,200</td>
<td>22,750</td>
<td>90,100</td>
</tr>
<tr>
<td>100</td>
<td>8,050</td>
<td>15,000</td>
<td>24,000</td>
<td>94,950</td>
</tr>
<tr>
<td>120</td>
<td>8,850</td>
<td>16,400</td>
<td>26,300</td>
<td>104,050</td>
</tr>
<tr>
<td>140</td>
<td>9,550</td>
<td>17,750</td>
<td>28,400</td>
<td>112,350</td>
</tr>
<tr>
<td>160</td>
<td>10,200</td>
<td>18,950</td>
<td>30,350</td>
<td>120,150</td>
</tr>
<tr>
<td>180</td>
<td>10,800</td>
<td>20,100</td>
<td>32,200</td>
<td>127,400</td>
</tr>
<tr>
<td>200</td>
<td>11,400</td>
<td>21,200</td>
<td>33,950</td>
<td>134,300</td>
</tr>
<tr>
<td>220</td>
<td>11,950</td>
<td>22,200</td>
<td>35,600</td>
<td>140,850</td>
</tr>
<tr>
<td>240</td>
<td>12,500</td>
<td>23,200</td>
<td>37,200</td>
<td>147,150</td>
</tr>
<tr>
<td>260</td>
<td>13,000</td>
<td>24,150</td>
<td>38,700</td>
<td>153,150</td>
</tr>
<tr>
<td>280</td>
<td>13,500</td>
<td>25,050</td>
<td>40,150</td>
<td>158,900</td>
</tr>
<tr>
<td>300</td>
<td>13,950</td>
<td>25,950</td>
<td>41,550</td>
<td>164,500</td>
</tr>
</tbody>
</table>
Pilot Test – Separator Pressure

- New high oil rate Delaware test well had high level ESD’s 3-4 times per week
- Automated separator pressure control system chosen over wellhead choke due to lower implementation cost and increased liquid removal rates
- Method needed to predict high liquid level events regardless of method chosen
 - Detecting level increases deemed too late to affect vessel pressure increase
Automating Separator Pressure

- Kimray 75 PG manual pilot replaced with Fisher I2P 4-20 mA transducer
Automating Separator Pressure

- All wellhead, flowline, and separator pressures monitored at high frequency (5 seconds) during two high separator level ESD events

- Data enabled statistical determination of indicators correlating pressure behavior to high level ESD events

- Algorithms installed in IoT enabled device controlling I2P transducer on separator gas backpressure valve, with calculations every 5 seconds
Algorithm Logic

- Detection of PLSGR Event
 - Observe normal difference between flowline pressure at wellhead, and separator pressure
 - Observe casing pressure, looking for slight drop
 - Can follow tubing gradient drop due to “terrain” blowdown
 - Drop severity an indication of gas blowdown severity
 - Employ statistics to tie observed high level events to observed pressure data, establishing correlation
- Wellhead flowmeters a more expensive option
- Separator level sensors “catching bullet”
 - If level sensors catch the level increase, it is too late
Algorithm Logic

- Completion of PLSGR Event
 - Once wellhead flowline pressure begins to drop, separator pressure setpoint is lowered
 - Separator level sensors confirm normal levels before lowering setpoint
 - Process repeats
Algorithm Logic

- **Optimal Separator Pressure Selection**
 - Separator pressure setpoint lowered until level sensors indicate level building
 - Pressure of oil and water receiving systems monitored
 - Statistics employed to determine lowest optimal separator pressure
 - No more guessing by operator on the separator pressure needed for liquids to dump

Result: Flowline Backpressure Optimization
Results

- High Level ESD frequency once per month from 3-4 times per week (93% drop)
- Separator pressure only elevated following PLSGR events
 - Minimizing back-pressure on reservoir
 - Maximizing well performance
- Well runtime significantly elevated
- Paid out project with first ESD prevention
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
Slug Mitigation Method

- Increase GL gas rate
- Reduction of flowline and/or riser diameter
- Splitting the flow into dual or multiple streams
- Gas injection in the riser
- Use of mixing devices at the riser base
- Subsea separation (requires two separate flowlines and a liquid pump)
- Internal small pipe insertion (intrusive solution)
- External multi-entry gas bypass
- Choking (reduce production capacity)
- Increase of backpressure
- External bypass line
- Foaming