Transitioning To Intermittent Gas Lift in Unconventionals

Claire Cherrey – EagleFord Production Engineer
Bill Hearn – Staff Production Engineer
Agenda

- Introduce Project Goals
 - Reduce GUF (Gas Utilization Factor) on low marginal producing wells (< 30 bpd)
 - Reduce total injection gas behind central facility to optimize operating costs
 - Reduce paraffin accumulation in tubing
 - Prepare well for end of life cycle (GAPL System)

- Intermittent Gas Lift (IGL) & Gas Assist Plunger Lift (GAPL) Overview & Results
 - Well selection criteria
 - Intermittent Gas Lift Overview
 - Results
 - Pilot Valve Overview
 - Results
 - Lift Efficiency
 - GAPL System Overview
 - Results

- Challenges
Artificial Lift Transition

The Premise

- Critical Lift requires a total gas rate of around 400-500 Mcf/day. Many of the wells in our Shale Unconventional wells are < 1 Mcf per bbl of oil.
- If our primary lift was going to be in continuous gas lift and each well was going to need 400 Mcf/day Injection long term then we would need ~ 260 Compressors in a field to support 4000 wells.
- We needed to adapt to a strategy that connected the amount of gas we used for lift to the amount of barrels we were lifting resulting in a lift cost in $/bbl that was somewhat consistent.
Lifting Cost Example

- **Lifting Costs:**
 - 1 3516 compressor can move ~6.1 MMCFD
 - Direct Cost: Compressor Rental
 - (3516) - $19k/month
 - Indirect Cost: Fuel Gas - $11k-18k/month
 - Total Yearly Cost - $350k - $450k
 - Cost per MCF - $.16 -$.20

<table>
<thead>
<tr>
<th>Artificial Lift Type</th>
<th>Oil Rate (bopd)</th>
<th>Gas Lift Needed (mcfd)</th>
<th>Lifting Cost ($/bbl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Injection</td>
<td>10</td>
<td>400</td>
<td>8.00</td>
</tr>
<tr>
<td>IGL</td>
<td>10</td>
<td>200-250</td>
<td>4.00-5.00</td>
</tr>
<tr>
<td>Pilot Valve</td>
<td>10</td>
<td>50-100</td>
<td>1.00-2.00</td>
</tr>
<tr>
<td>GAPL</td>
<td>10</td>
<td>50</td>
<td>1.00</td>
</tr>
</tbody>
</table>
In order to track and optimize we began to use GUF.

- Target GUF is based on Mcf/bbl/1000 feet.
- Typical goal GUF is near 500-1000 depending on Lift Type.
- For Example in a 10000 foot well the result would be 5 Mcf/bbl but no more than the critical rate.

Early Strategies Shown in image

<table>
<thead>
<tr>
<th>Artificial Lift Type</th>
<th>Liquid Rate (BPD)</th>
<th>Gas Lift Gas needed (Mcf/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Injection</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>IGL</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Plunger Lift</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Lower Rate Well – IGL?</td>
<td></td>
</tr>
<tr>
<td>Continuous Injection</td>
<td>40</td>
<td>500</td>
</tr>
<tr>
<td>IGL</td>
<td>40</td>
<td>400</td>
</tr>
<tr>
<td>Plunger</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Late Life – Plunger?</td>
<td></td>
</tr>
<tr>
<td>Continuous Injection</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>IGL</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Plunger</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>
Intermittent Gas Lift (Orifice)

- The first method in IGL is to inject a high amount of gas from surface for a short amount of time, with an extended gas lift injection shut in time
 - Objective to bring fluid to surface in slugs and extended downtime to allow well to build up a fluid level for the next cycle

- Equipment Needed:
 - Standing Valve in profile nipple below bottom gas lift mandrel
 - Objective is to catch any liquid fall back and to hold fluid level for next cycle
 - 16 or 20 port orifice valve in bottom mandrel
 - Normal unloading valves in EF are 12 ports. Having a bigger port in the orifice will allow higher gas injection to pass

- Challenges
 - Gas needed from central facility
 - Need to have enough gas in system to inject at high rates
 - Potentially an issue when multiple wells are on IGL behind the same central
 - More work needed around fluid level shots to determine lift efficiency
Intermittent Gas Lift Results

- Example Settings
 - On Cycle – Inject 1.0 MMCf/day for 40 Minutes
 - Off Cycle – Zero Injection for 135 Minutes
 - 1-2 bbls/day cycle, total injection 185 Mcf/day (GUF of 10)
 - Used with Cycling the tubing helped with Paraffin
 - Pretty Simple

- Risks/Challenges – Fluid Level shots to determine fluid inflow, Risk to GLV’s if Casing pressure rose too high we may multi-point during cycle.
Pilot Valves – Improved IGL

- Rather than intermit at the surface intermit downhole
 - Less ups and downs on the Gas Lift Gas utilization.
 - Replaces the Orifice (lowest injection point)
 - Simple – Possible intermediate step before plunger
 - If we have trouble plunger lifting.
Example well #1 was the first well to have the pilot valve and standing valve installed

- Realized reduction in gas lift injection from 300 MCF/D to 50 MCF/D (83% Reduction)
- Maintaining production similar to production rates during continuous gas lift operations
- 14 Months Continuous Operation 65 Mcf/day injection 13 bbls/day fluid.
Pilot Valve - Fluid Level Shots & Results

- Fluid level shots were taken before pilot valve cycled and after slug arrived at surface
 - Objective:
 - Determine liquid level in tubing before cycle
 - Determine efficiency (Liquid to surface/liquid level before cycle)
 - Determine well inflow after cycle

- Results:
 - 750’ of gas free fluid above standing valve (9,225’) before pilot valve cycles (~3.0 bbls)
 - 2.1 bbls of total fluid arrived at surface during cycle
 - Lift Efficiency calculated out to be ~70%
 - Slug arrived in 8 minutes with the standing valve located at 11,200’ (Slug Arrival Speed = 1400 ft/min.)

- In the past the well has plugged off the wellhead and flowline within a 4 week period.
 - With the help of the fluid level shots no paraffin has been detected since pilot valve installation (14 months running)
Gas Assist Plunger Lift (GAPL)

- New Gas Lift designs are completed with conventional mandrels in the upper section and one Side Pocket Mandrel on bottom.
- However we have many wells with SPM’s top to bottom.
GAPL Results

- Well used to be on continuously injection around EOT at 300 MCF/D
 - Injecting around EOT caused instability in the flow
 - Due to low rates and slow velocities, paraffin accumulation began to occur
- BS/SV Combo was installed in profile nipple and spiral 17” plunger was dropped
- The well remained on continuously gas lift but rates were reduced from 300 MCF/D to 50 MCF/D to provide some assistance to the plunger lift
GAPL with SPM

- Installed December 2017 in Phase 1
- System was operating only in Oman & Canada
- 8’ Long Plunger
 - 2 Conventional Plungers connected by a rod
- 10’ 10k psi Lubricator lowered by a winch system
- Operating similarly to a conventional plunger
 - Slower fall times → Lower rate wells
 - Cycling ~ 10 x day
- Reduced gas lift by > 60%
- Heavy paraffin well before → No paraffin build now
- Optimizing towards lower installation cost
Plunger Fall Tracking in GAPL well

- Plunger fall in GAPL wells is critical to optimization.
- Major Challenges
 - Paraffin
 - Length of plunger (SPM wells)
 - Fluid Level
Plunger Tracking is much like conventional gas wells however

- Larger initial tubing pressure drop when the plunger leaves the lubricator (due to weight)
- SPM’s are good indicators both acoustically and on Pressure Indication
 - The SPM’s show up really well below liquid level.
- When the plunger reaches the bumperspring it looks like a Mandrel but with Depth correlation and observing that the signature does not show it falling again you can be clear it’s on bottom
Eventually Plunger Fall time looks much like a conventional but Pressure and Fluid Level will have a major impact.

Average Plunger Vel. (gas): -223.91 ft/min
Average Plunger Vel. (Liq.): -84.09 ft/min
Average Jts/min (gas): 7.355
Average Jts/min (Liq.): 2.715
Plunger Fall Challenges

- What does this look like?
SPM-GAPL Challenges

- Paraffin really slowed down plunger fall initially.
- Caused Major problems on getting to bottom.
Optimization – Minimum On Wells

Casing Pressure
Tubing Pressure

Oil Production
Water Production

Injection Rate
Production Rate

Jan 2018

Feb. 4 - 7, 2018
2018 Artificial Lift Strategies for Unconventional Wells Workshop
Oklahoma City, OK
Lessons

- Economics - wells will be very low producers
 - Plungers - $30-$40k
 - IGL - < $20k

- Operational challenges around re-entering wells
 - Mainly seeing scale (Iron Sulfide) restrictions deep
 - Pressure drops across bottom mandrel creating a cooling effect
 - Scale in profile nipple
 - Scale at EOT
 - Acid job potentially needed prior to job

- Challenges surrounding downhole setup
 - SPM Plungers can be run however they complicate things.
 - Packer set depth at 30 degree inclination
 - Is that deep enough for later in the life of the well
Pilot Valve – Fluid Level Shot Before Cycle
Pilot Valve Well - Fluid Level Shot After Cycle

Distance To Liquid: 10220 ft MD

RTTT (sec): 16.649

AV: 1225 ft

Fluid Above Tubing: 958 ft

Free Flow Above Tubing: 356 ft

Depth: 5457 ft

Flow Rate: 19.88 BPS

Pressure Buildup: 220 psi L/D @ 25 psig
Infrastructure
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.